| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( n = 0s -> ( A +s n ) = ( A +s 0s ) ) | 
						
							| 2 | 1 | eleq1d |  |-  ( n = 0s -> ( ( A +s n ) e. NN0_s <-> ( A +s 0s ) e. NN0_s ) ) | 
						
							| 3 | 2 | imbi2d |  |-  ( n = 0s -> ( ( A e. NN0_s -> ( A +s n ) e. NN0_s ) <-> ( A e. NN0_s -> ( A +s 0s ) e. NN0_s ) ) ) | 
						
							| 4 |  | oveq2 |  |-  ( n = m -> ( A +s n ) = ( A +s m ) ) | 
						
							| 5 | 4 | eleq1d |  |-  ( n = m -> ( ( A +s n ) e. NN0_s <-> ( A +s m ) e. NN0_s ) ) | 
						
							| 6 | 5 | imbi2d |  |-  ( n = m -> ( ( A e. NN0_s -> ( A +s n ) e. NN0_s ) <-> ( A e. NN0_s -> ( A +s m ) e. NN0_s ) ) ) | 
						
							| 7 |  | oveq2 |  |-  ( n = ( m +s 1s ) -> ( A +s n ) = ( A +s ( m +s 1s ) ) ) | 
						
							| 8 | 7 | eleq1d |  |-  ( n = ( m +s 1s ) -> ( ( A +s n ) e. NN0_s <-> ( A +s ( m +s 1s ) ) e. NN0_s ) ) | 
						
							| 9 | 8 | imbi2d |  |-  ( n = ( m +s 1s ) -> ( ( A e. NN0_s -> ( A +s n ) e. NN0_s ) <-> ( A e. NN0_s -> ( A +s ( m +s 1s ) ) e. NN0_s ) ) ) | 
						
							| 10 |  | oveq2 |  |-  ( n = B -> ( A +s n ) = ( A +s B ) ) | 
						
							| 11 | 10 | eleq1d |  |-  ( n = B -> ( ( A +s n ) e. NN0_s <-> ( A +s B ) e. NN0_s ) ) | 
						
							| 12 | 11 | imbi2d |  |-  ( n = B -> ( ( A e. NN0_s -> ( A +s n ) e. NN0_s ) <-> ( A e. NN0_s -> ( A +s B ) e. NN0_s ) ) ) | 
						
							| 13 |  | n0sno |  |-  ( A e. NN0_s -> A e. No ) | 
						
							| 14 | 13 | addsridd |  |-  ( A e. NN0_s -> ( A +s 0s ) = A ) | 
						
							| 15 |  | id |  |-  ( A e. NN0_s -> A e. NN0_s ) | 
						
							| 16 | 14 15 | eqeltrd |  |-  ( A e. NN0_s -> ( A +s 0s ) e. NN0_s ) | 
						
							| 17 | 13 | adantr |  |-  ( ( A e. NN0_s /\ m e. NN0_s ) -> A e. No ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ( A e. NN0_s /\ m e. NN0_s ) /\ ( A +s m ) e. NN0_s ) -> A e. No ) | 
						
							| 19 |  | n0sno |  |-  ( m e. NN0_s -> m e. No ) | 
						
							| 20 | 19 | adantl |  |-  ( ( A e. NN0_s /\ m e. NN0_s ) -> m e. No ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( A e. NN0_s /\ m e. NN0_s ) /\ ( A +s m ) e. NN0_s ) -> m e. No ) | 
						
							| 22 |  | 1sno |  |-  1s e. No | 
						
							| 23 | 22 | a1i |  |-  ( ( ( A e. NN0_s /\ m e. NN0_s ) /\ ( A +s m ) e. NN0_s ) -> 1s e. No ) | 
						
							| 24 | 18 21 23 | addsassd |  |-  ( ( ( A e. NN0_s /\ m e. NN0_s ) /\ ( A +s m ) e. NN0_s ) -> ( ( A +s m ) +s 1s ) = ( A +s ( m +s 1s ) ) ) | 
						
							| 25 |  | peano2n0s |  |-  ( ( A +s m ) e. NN0_s -> ( ( A +s m ) +s 1s ) e. NN0_s ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ( A e. NN0_s /\ m e. NN0_s ) /\ ( A +s m ) e. NN0_s ) -> ( ( A +s m ) +s 1s ) e. NN0_s ) | 
						
							| 27 | 24 26 | eqeltrrd |  |-  ( ( ( A e. NN0_s /\ m e. NN0_s ) /\ ( A +s m ) e. NN0_s ) -> ( A +s ( m +s 1s ) ) e. NN0_s ) | 
						
							| 28 | 27 | ex |  |-  ( ( A e. NN0_s /\ m e. NN0_s ) -> ( ( A +s m ) e. NN0_s -> ( A +s ( m +s 1s ) ) e. NN0_s ) ) | 
						
							| 29 | 28 | expcom |  |-  ( m e. NN0_s -> ( A e. NN0_s -> ( ( A +s m ) e. NN0_s -> ( A +s ( m +s 1s ) ) e. NN0_s ) ) ) | 
						
							| 30 | 29 | a2d |  |-  ( m e. NN0_s -> ( ( A e. NN0_s -> ( A +s m ) e. NN0_s ) -> ( A e. NN0_s -> ( A +s ( m +s 1s ) ) e. NN0_s ) ) ) | 
						
							| 31 | 3 6 9 12 16 30 | n0sind |  |-  ( B e. NN0_s -> ( A e. NN0_s -> ( A +s B ) e. NN0_s ) ) | 
						
							| 32 | 31 | impcom |  |-  ( ( A e. NN0_s /\ B e. NN0_s ) -> ( A +s B ) e. NN0_s ) |