Metamath Proof Explorer


Theorem n0sind

Description: Principle of Mathematical Induction (inference schema). Compare nnind and finds . (Contributed by Scott Fenton, 17-Mar-2025)

Ref Expression
Hypotheses n0sind.1
|- ( x = 0s -> ( ph <-> ps ) )
n0sind.2
|- ( x = y -> ( ph <-> ch ) )
n0sind.3
|- ( x = ( y +s 1s ) -> ( ph <-> th ) )
n0sind.4
|- ( x = A -> ( ph <-> ta ) )
n0sind.5
|- ps
n0sind.6
|- ( y e. NN0_s -> ( ch -> th ) )
Assertion n0sind
|- ( A e. NN0_s -> ta )

Proof

Step Hyp Ref Expression
1 n0sind.1
 |-  ( x = 0s -> ( ph <-> ps ) )
2 n0sind.2
 |-  ( x = y -> ( ph <-> ch ) )
3 n0sind.3
 |-  ( x = ( y +s 1s ) -> ( ph <-> th ) )
4 n0sind.4
 |-  ( x = A -> ( ph <-> ta ) )
5 n0sind.5
 |-  ps
6 n0sind.6
 |-  ( y e. NN0_s -> ( ch -> th ) )
7 tru
 |-  T.
8 df-n0s
 |-  NN0_s = ( rec ( ( n e. _V |-> ( n +s 1s ) ) , 0s ) " _om )
9 8 a1i
 |-  ( T. -> NN0_s = ( rec ( ( n e. _V |-> ( n +s 1s ) ) , 0s ) " _om ) )
10 0sno
 |-  0s e. No
11 10 a1i
 |-  ( T. -> 0s e. No )
12 5 a1i
 |-  ( T. -> ps )
13 6 adantl
 |-  ( ( T. /\ y e. NN0_s ) -> ( ch -> th ) )
14 9 11 1 2 3 4 12 13 noseqinds
 |-  ( ( T. /\ A e. NN0_s ) -> ta )
15 7 14 mpan
 |-  ( A e. NN0_s -> ta )