| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id |  |-  ( y = 0s -> y = 0s ) | 
						
							| 2 |  | oveq1 |  |-  ( y = 0s -> ( y -s 1s ) = ( 0s -s 1s ) ) | 
						
							| 3 | 2 | sneqd |  |-  ( y = 0s -> { ( y -s 1s ) } = { ( 0s -s 1s ) } ) | 
						
							| 4 | 3 | oveq1d |  |-  ( y = 0s -> ( { ( y -s 1s ) } |s (/) ) = ( { ( 0s -s 1s ) } |s (/) ) ) | 
						
							| 5 | 1 4 | eqeq12d |  |-  ( y = 0s -> ( y = ( { ( y -s 1s ) } |s (/) ) <-> 0s = ( { ( 0s -s 1s ) } |s (/) ) ) ) | 
						
							| 6 |  | id |  |-  ( y = x -> y = x ) | 
						
							| 7 |  | oveq1 |  |-  ( y = x -> ( y -s 1s ) = ( x -s 1s ) ) | 
						
							| 8 | 7 | sneqd |  |-  ( y = x -> { ( y -s 1s ) } = { ( x -s 1s ) } ) | 
						
							| 9 | 8 | oveq1d |  |-  ( y = x -> ( { ( y -s 1s ) } |s (/) ) = ( { ( x -s 1s ) } |s (/) ) ) | 
						
							| 10 | 6 9 | eqeq12d |  |-  ( y = x -> ( y = ( { ( y -s 1s ) } |s (/) ) <-> x = ( { ( x -s 1s ) } |s (/) ) ) ) | 
						
							| 11 |  | id |  |-  ( y = ( x +s 1s ) -> y = ( x +s 1s ) ) | 
						
							| 12 |  | oveq1 |  |-  ( y = ( x +s 1s ) -> ( y -s 1s ) = ( ( x +s 1s ) -s 1s ) ) | 
						
							| 13 | 12 | sneqd |  |-  ( y = ( x +s 1s ) -> { ( y -s 1s ) } = { ( ( x +s 1s ) -s 1s ) } ) | 
						
							| 14 | 13 | oveq1d |  |-  ( y = ( x +s 1s ) -> ( { ( y -s 1s ) } |s (/) ) = ( { ( ( x +s 1s ) -s 1s ) } |s (/) ) ) | 
						
							| 15 | 11 14 | eqeq12d |  |-  ( y = ( x +s 1s ) -> ( y = ( { ( y -s 1s ) } |s (/) ) <-> ( x +s 1s ) = ( { ( ( x +s 1s ) -s 1s ) } |s (/) ) ) ) | 
						
							| 16 |  | id |  |-  ( y = A -> y = A ) | 
						
							| 17 |  | oveq1 |  |-  ( y = A -> ( y -s 1s ) = ( A -s 1s ) ) | 
						
							| 18 | 17 | sneqd |  |-  ( y = A -> { ( y -s 1s ) } = { ( A -s 1s ) } ) | 
						
							| 19 | 18 | oveq1d |  |-  ( y = A -> ( { ( y -s 1s ) } |s (/) ) = ( { ( A -s 1s ) } |s (/) ) ) | 
						
							| 20 | 16 19 | eqeq12d |  |-  ( y = A -> ( y = ( { ( y -s 1s ) } |s (/) ) <-> A = ( { ( A -s 1s ) } |s (/) ) ) ) | 
						
							| 21 |  | 0sno |  |-  0s e. No | 
						
							| 22 |  | 1sno |  |-  1s e. No | 
						
							| 23 |  | subscl |  |-  ( ( 0s e. No /\ 1s e. No ) -> ( 0s -s 1s ) e. No ) | 
						
							| 24 | 21 22 23 | mp2an |  |-  ( 0s -s 1s ) e. No | 
						
							| 25 | 24 | a1i |  |-  ( T. -> ( 0s -s 1s ) e. No ) | 
						
							| 26 | 21 | a1i |  |-  ( T. -> 0s e. No ) | 
						
							| 27 |  | 0slt1s |  |-  0s  | 
						
							| 28 |  | addslid |  |-  ( 1s e. No -> ( 0s +s 1s ) = 1s ) | 
						
							| 29 | 22 28 | ax-mp |  |-  ( 0s +s 1s ) = 1s | 
						
							| 30 | 27 29 | breqtrri |  |-  0s  | 
						
							| 31 | 22 | a1i |  |-  ( T. -> 1s e. No ) | 
						
							| 32 | 26 31 26 | sltsubaddd |  |-  ( T. -> ( ( 0s -s 1s )  0s  | 
						
							| 33 | 30 32 | mpbiri |  |-  ( T. -> ( 0s -s 1s )  | 
						
							| 34 | 25 26 33 | ssltsn |  |-  ( T. -> { ( 0s -s 1s ) } < | 
						
							| 35 | 21 | elexi |  |-  0s e. _V | 
						
							| 36 | 35 | snelpw |  |-  ( 0s e. No <-> { 0s } e. ~P No ) | 
						
							| 37 | 21 36 | mpbi |  |-  { 0s } e. ~P No | 
						
							| 38 |  | nulssgt |  |-  ( { 0s } e. ~P No -> { 0s } < | 
						
							| 39 | 37 38 | ax-mp |  |-  { 0s } < | 
						
							| 40 | 39 | a1i |  |-  ( T. -> { 0s } < | 
						
							| 41 | 34 40 | cuteq0 |  |-  ( T. -> ( { ( 0s -s 1s ) } |s (/) ) = 0s ) | 
						
							| 42 | 41 | mptru |  |-  ( { ( 0s -s 1s ) } |s (/) ) = 0s | 
						
							| 43 | 42 | eqcomi |  |-  0s = ( { ( 0s -s 1s ) } |s (/) ) | 
						
							| 44 |  | ovex |  |-  ( x -s 1s ) e. _V | 
						
							| 45 |  | oveq1 |  |-  ( b = ( x -s 1s ) -> ( b +s 1s ) = ( ( x -s 1s ) +s 1s ) ) | 
						
							| 46 | 45 | eqeq2d |  |-  ( b = ( x -s 1s ) -> ( a = ( b +s 1s ) <-> a = ( ( x -s 1s ) +s 1s ) ) ) | 
						
							| 47 | 44 46 | rexsn |  |-  ( E. b e. { ( x -s 1s ) } a = ( b +s 1s ) <-> a = ( ( x -s 1s ) +s 1s ) ) | 
						
							| 48 |  | n0sno |  |-  ( x e. NN0_s -> x e. No ) | 
						
							| 49 |  | npcans |  |-  ( ( x e. No /\ 1s e. No ) -> ( ( x -s 1s ) +s 1s ) = x ) | 
						
							| 50 | 48 22 49 | sylancl |  |-  ( x e. NN0_s -> ( ( x -s 1s ) +s 1s ) = x ) | 
						
							| 51 | 50 | adantr |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( ( x -s 1s ) +s 1s ) = x ) | 
						
							| 52 | 51 | eqeq2d |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( a = ( ( x -s 1s ) +s 1s ) <-> a = x ) ) | 
						
							| 53 | 47 52 | bitrid |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( E. b e. { ( x -s 1s ) } a = ( b +s 1s ) <-> a = x ) ) | 
						
							| 54 | 53 | alrimiv |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> A. a ( E. b e. { ( x -s 1s ) } a = ( b +s 1s ) <-> a = x ) ) | 
						
							| 55 |  | absn |  |-  ( { a | E. b e. { ( x -s 1s ) } a = ( b +s 1s ) } = { x } <-> A. a ( E. b e. { ( x -s 1s ) } a = ( b +s 1s ) <-> a = x ) ) | 
						
							| 56 | 54 55 | sylibr |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> { a | E. b e. { ( x -s 1s ) } a = ( b +s 1s ) } = { x } ) | 
						
							| 57 |  | oveq2 |  |-  ( b = 0s -> ( x +s b ) = ( x +s 0s ) ) | 
						
							| 58 | 57 | eqeq2d |  |-  ( b = 0s -> ( a = ( x +s b ) <-> a = ( x +s 0s ) ) ) | 
						
							| 59 | 35 58 | rexsn |  |-  ( E. b e. { 0s } a = ( x +s b ) <-> a = ( x +s 0s ) ) | 
						
							| 60 | 48 | addsridd |  |-  ( x e. NN0_s -> ( x +s 0s ) = x ) | 
						
							| 61 | 60 | adantr |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( x +s 0s ) = x ) | 
						
							| 62 | 61 | eqeq2d |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( a = ( x +s 0s ) <-> a = x ) ) | 
						
							| 63 | 59 62 | bitrid |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( E. b e. { 0s } a = ( x +s b ) <-> a = x ) ) | 
						
							| 64 | 63 | alrimiv |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> A. a ( E. b e. { 0s } a = ( x +s b ) <-> a = x ) ) | 
						
							| 65 |  | absn |  |-  ( { a | E. b e. { 0s } a = ( x +s b ) } = { x } <-> A. a ( E. b e. { 0s } a = ( x +s b ) <-> a = x ) ) | 
						
							| 66 | 64 65 | sylibr |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> { a | E. b e. { 0s } a = ( x +s b ) } = { x } ) | 
						
							| 67 | 56 66 | uneq12d |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( { a | E. b e. { ( x -s 1s ) } a = ( b +s 1s ) } u. { a | E. b e. { 0s } a = ( x +s b ) } ) = ( { x } u. { x } ) ) | 
						
							| 68 |  | unidm |  |-  ( { x } u. { x } ) = { x } | 
						
							| 69 | 67 68 | eqtrdi |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( { a | E. b e. { ( x -s 1s ) } a = ( b +s 1s ) } u. { a | E. b e. { 0s } a = ( x +s b ) } ) = { x } ) | 
						
							| 70 |  | rex0 |  |-  -. E. b e. (/) a = ( b +s 1s ) | 
						
							| 71 | 70 | abf |  |-  { a | E. b e. (/) a = ( b +s 1s ) } = (/) | 
						
							| 72 |  | rex0 |  |-  -. E. b e. (/) a = ( x +s b ) | 
						
							| 73 | 72 | abf |  |-  { a | E. b e. (/) a = ( x +s b ) } = (/) | 
						
							| 74 | 71 73 | uneq12i |  |-  ( { a | E. b e. (/) a = ( b +s 1s ) } u. { a | E. b e. (/) a = ( x +s b ) } ) = ( (/) u. (/) ) | 
						
							| 75 |  | un0 |  |-  ( (/) u. (/) ) = (/) | 
						
							| 76 | 74 75 | eqtri |  |-  ( { a | E. b e. (/) a = ( b +s 1s ) } u. { a | E. b e. (/) a = ( x +s b ) } ) = (/) | 
						
							| 77 | 76 | a1i |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( { a | E. b e. (/) a = ( b +s 1s ) } u. { a | E. b e. (/) a = ( x +s b ) } ) = (/) ) | 
						
							| 78 | 69 77 | oveq12d |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( ( { a | E. b e. { ( x -s 1s ) } a = ( b +s 1s ) } u. { a | E. b e. { 0s } a = ( x +s b ) } ) |s ( { a | E. b e. (/) a = ( b +s 1s ) } u. { a | E. b e. (/) a = ( x +s b ) } ) ) = ( { x } |s (/) ) ) | 
						
							| 79 |  | subscl |  |-  ( ( x e. No /\ 1s e. No ) -> ( x -s 1s ) e. No ) | 
						
							| 80 | 48 22 79 | sylancl |  |-  ( x e. NN0_s -> ( x -s 1s ) e. No ) | 
						
							| 81 | 80 | adantr |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( x -s 1s ) e. No ) | 
						
							| 82 | 44 | snelpw |  |-  ( ( x -s 1s ) e. No <-> { ( x -s 1s ) } e. ~P No ) | 
						
							| 83 | 81 82 | sylib |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> { ( x -s 1s ) } e. ~P No ) | 
						
							| 84 |  | nulssgt |  |-  ( { ( x -s 1s ) } e. ~P No -> { ( x -s 1s ) } < | 
						
							| 85 | 83 84 | syl |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> { ( x -s 1s ) } < | 
						
							| 86 | 39 | a1i |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> { 0s } < | 
						
							| 87 |  | simpr |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> x = ( { ( x -s 1s ) } |s (/) ) ) | 
						
							| 88 |  | df-1s |  |-  1s = ( { 0s } |s (/) ) | 
						
							| 89 | 88 | a1i |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> 1s = ( { 0s } |s (/) ) ) | 
						
							| 90 | 85 86 87 89 | addsunif |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( x +s 1s ) = ( ( { a | E. b e. { ( x -s 1s ) } a = ( b +s 1s ) } u. { a | E. b e. { 0s } a = ( x +s b ) } ) |s ( { a | E. b e. (/) a = ( b +s 1s ) } u. { a | E. b e. (/) a = ( x +s b ) } ) ) ) | 
						
							| 91 | 48 | adantr |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> x e. No ) | 
						
							| 92 |  | pncans |  |-  ( ( x e. No /\ 1s e. No ) -> ( ( x +s 1s ) -s 1s ) = x ) | 
						
							| 93 | 91 22 92 | sylancl |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( ( x +s 1s ) -s 1s ) = x ) | 
						
							| 94 | 93 | sneqd |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> { ( ( x +s 1s ) -s 1s ) } = { x } ) | 
						
							| 95 | 94 | oveq1d |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( { ( ( x +s 1s ) -s 1s ) } |s (/) ) = ( { x } |s (/) ) ) | 
						
							| 96 | 78 90 95 | 3eqtr4d |  |-  ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( x +s 1s ) = ( { ( ( x +s 1s ) -s 1s ) } |s (/) ) ) | 
						
							| 97 | 96 | ex |  |-  ( x e. NN0_s -> ( x = ( { ( x -s 1s ) } |s (/) ) -> ( x +s 1s ) = ( { ( ( x +s 1s ) -s 1s ) } |s (/) ) ) ) | 
						
							| 98 | 5 10 15 20 43 97 | n0sind |  |-  ( A e. NN0_s -> A = ( { ( A -s 1s ) } |s (/) ) ) |