| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( y = 0s -> y = 0s ) |
| 2 |
|
oveq1 |
|- ( y = 0s -> ( y -s 1s ) = ( 0s -s 1s ) ) |
| 3 |
2
|
sneqd |
|- ( y = 0s -> { ( y -s 1s ) } = { ( 0s -s 1s ) } ) |
| 4 |
3
|
oveq1d |
|- ( y = 0s -> ( { ( y -s 1s ) } |s (/) ) = ( { ( 0s -s 1s ) } |s (/) ) ) |
| 5 |
1 4
|
eqeq12d |
|- ( y = 0s -> ( y = ( { ( y -s 1s ) } |s (/) ) <-> 0s = ( { ( 0s -s 1s ) } |s (/) ) ) ) |
| 6 |
|
id |
|- ( y = x -> y = x ) |
| 7 |
|
oveq1 |
|- ( y = x -> ( y -s 1s ) = ( x -s 1s ) ) |
| 8 |
7
|
sneqd |
|- ( y = x -> { ( y -s 1s ) } = { ( x -s 1s ) } ) |
| 9 |
8
|
oveq1d |
|- ( y = x -> ( { ( y -s 1s ) } |s (/) ) = ( { ( x -s 1s ) } |s (/) ) ) |
| 10 |
6 9
|
eqeq12d |
|- ( y = x -> ( y = ( { ( y -s 1s ) } |s (/) ) <-> x = ( { ( x -s 1s ) } |s (/) ) ) ) |
| 11 |
|
id |
|- ( y = ( x +s 1s ) -> y = ( x +s 1s ) ) |
| 12 |
|
oveq1 |
|- ( y = ( x +s 1s ) -> ( y -s 1s ) = ( ( x +s 1s ) -s 1s ) ) |
| 13 |
12
|
sneqd |
|- ( y = ( x +s 1s ) -> { ( y -s 1s ) } = { ( ( x +s 1s ) -s 1s ) } ) |
| 14 |
13
|
oveq1d |
|- ( y = ( x +s 1s ) -> ( { ( y -s 1s ) } |s (/) ) = ( { ( ( x +s 1s ) -s 1s ) } |s (/) ) ) |
| 15 |
11 14
|
eqeq12d |
|- ( y = ( x +s 1s ) -> ( y = ( { ( y -s 1s ) } |s (/) ) <-> ( x +s 1s ) = ( { ( ( x +s 1s ) -s 1s ) } |s (/) ) ) ) |
| 16 |
|
id |
|- ( y = A -> y = A ) |
| 17 |
|
oveq1 |
|- ( y = A -> ( y -s 1s ) = ( A -s 1s ) ) |
| 18 |
17
|
sneqd |
|- ( y = A -> { ( y -s 1s ) } = { ( A -s 1s ) } ) |
| 19 |
18
|
oveq1d |
|- ( y = A -> ( { ( y -s 1s ) } |s (/) ) = ( { ( A -s 1s ) } |s (/) ) ) |
| 20 |
16 19
|
eqeq12d |
|- ( y = A -> ( y = ( { ( y -s 1s ) } |s (/) ) <-> A = ( { ( A -s 1s ) } |s (/) ) ) ) |
| 21 |
|
0sno |
|- 0s e. No |
| 22 |
|
1sno |
|- 1s e. No |
| 23 |
|
subscl |
|- ( ( 0s e. No /\ 1s e. No ) -> ( 0s -s 1s ) e. No ) |
| 24 |
21 22 23
|
mp2an |
|- ( 0s -s 1s ) e. No |
| 25 |
24
|
a1i |
|- ( T. -> ( 0s -s 1s ) e. No ) |
| 26 |
21
|
a1i |
|- ( T. -> 0s e. No ) |
| 27 |
26
|
sltm1d |
|- ( T. -> ( 0s -s 1s ) |
| 28 |
25 27
|
cutneg |
|- ( T. -> ( { ( 0s -s 1s ) } |s (/) ) = 0s ) |
| 29 |
28
|
mptru |
|- ( { ( 0s -s 1s ) } |s (/) ) = 0s |
| 30 |
29
|
eqcomi |
|- 0s = ( { ( 0s -s 1s ) } |s (/) ) |
| 31 |
|
ovex |
|- ( x -s 1s ) e. _V |
| 32 |
|
oveq1 |
|- ( b = ( x -s 1s ) -> ( b +s 1s ) = ( ( x -s 1s ) +s 1s ) ) |
| 33 |
32
|
eqeq2d |
|- ( b = ( x -s 1s ) -> ( a = ( b +s 1s ) <-> a = ( ( x -s 1s ) +s 1s ) ) ) |
| 34 |
31 33
|
rexsn |
|- ( E. b e. { ( x -s 1s ) } a = ( b +s 1s ) <-> a = ( ( x -s 1s ) +s 1s ) ) |
| 35 |
|
n0sno |
|- ( x e. NN0_s -> x e. No ) |
| 36 |
|
npcans |
|- ( ( x e. No /\ 1s e. No ) -> ( ( x -s 1s ) +s 1s ) = x ) |
| 37 |
35 22 36
|
sylancl |
|- ( x e. NN0_s -> ( ( x -s 1s ) +s 1s ) = x ) |
| 38 |
37
|
adantr |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( ( x -s 1s ) +s 1s ) = x ) |
| 39 |
38
|
eqeq2d |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( a = ( ( x -s 1s ) +s 1s ) <-> a = x ) ) |
| 40 |
34 39
|
bitrid |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( E. b e. { ( x -s 1s ) } a = ( b +s 1s ) <-> a = x ) ) |
| 41 |
40
|
alrimiv |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> A. a ( E. b e. { ( x -s 1s ) } a = ( b +s 1s ) <-> a = x ) ) |
| 42 |
|
absn |
|- ( { a | E. b e. { ( x -s 1s ) } a = ( b +s 1s ) } = { x } <-> A. a ( E. b e. { ( x -s 1s ) } a = ( b +s 1s ) <-> a = x ) ) |
| 43 |
41 42
|
sylibr |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> { a | E. b e. { ( x -s 1s ) } a = ( b +s 1s ) } = { x } ) |
| 44 |
21
|
elexi |
|- 0s e. _V |
| 45 |
|
oveq2 |
|- ( b = 0s -> ( x +s b ) = ( x +s 0s ) ) |
| 46 |
45
|
eqeq2d |
|- ( b = 0s -> ( a = ( x +s b ) <-> a = ( x +s 0s ) ) ) |
| 47 |
44 46
|
rexsn |
|- ( E. b e. { 0s } a = ( x +s b ) <-> a = ( x +s 0s ) ) |
| 48 |
35
|
addsridd |
|- ( x e. NN0_s -> ( x +s 0s ) = x ) |
| 49 |
48
|
adantr |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( x +s 0s ) = x ) |
| 50 |
49
|
eqeq2d |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( a = ( x +s 0s ) <-> a = x ) ) |
| 51 |
47 50
|
bitrid |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( E. b e. { 0s } a = ( x +s b ) <-> a = x ) ) |
| 52 |
51
|
alrimiv |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> A. a ( E. b e. { 0s } a = ( x +s b ) <-> a = x ) ) |
| 53 |
|
absn |
|- ( { a | E. b e. { 0s } a = ( x +s b ) } = { x } <-> A. a ( E. b e. { 0s } a = ( x +s b ) <-> a = x ) ) |
| 54 |
52 53
|
sylibr |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> { a | E. b e. { 0s } a = ( x +s b ) } = { x } ) |
| 55 |
43 54
|
uneq12d |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( { a | E. b e. { ( x -s 1s ) } a = ( b +s 1s ) } u. { a | E. b e. { 0s } a = ( x +s b ) } ) = ( { x } u. { x } ) ) |
| 56 |
|
unidm |
|- ( { x } u. { x } ) = { x } |
| 57 |
55 56
|
eqtrdi |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( { a | E. b e. { ( x -s 1s ) } a = ( b +s 1s ) } u. { a | E. b e. { 0s } a = ( x +s b ) } ) = { x } ) |
| 58 |
|
rex0 |
|- -. E. b e. (/) a = ( b +s 1s ) |
| 59 |
58
|
abf |
|- { a | E. b e. (/) a = ( b +s 1s ) } = (/) |
| 60 |
|
rex0 |
|- -. E. b e. (/) a = ( x +s b ) |
| 61 |
60
|
abf |
|- { a | E. b e. (/) a = ( x +s b ) } = (/) |
| 62 |
59 61
|
uneq12i |
|- ( { a | E. b e. (/) a = ( b +s 1s ) } u. { a | E. b e. (/) a = ( x +s b ) } ) = ( (/) u. (/) ) |
| 63 |
|
un0 |
|- ( (/) u. (/) ) = (/) |
| 64 |
62 63
|
eqtri |
|- ( { a | E. b e. (/) a = ( b +s 1s ) } u. { a | E. b e. (/) a = ( x +s b ) } ) = (/) |
| 65 |
64
|
a1i |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( { a | E. b e. (/) a = ( b +s 1s ) } u. { a | E. b e. (/) a = ( x +s b ) } ) = (/) ) |
| 66 |
57 65
|
oveq12d |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( ( { a | E. b e. { ( x -s 1s ) } a = ( b +s 1s ) } u. { a | E. b e. { 0s } a = ( x +s b ) } ) |s ( { a | E. b e. (/) a = ( b +s 1s ) } u. { a | E. b e. (/) a = ( x +s b ) } ) ) = ( { x } |s (/) ) ) |
| 67 |
|
subscl |
|- ( ( x e. No /\ 1s e. No ) -> ( x -s 1s ) e. No ) |
| 68 |
35 22 67
|
sylancl |
|- ( x e. NN0_s -> ( x -s 1s ) e. No ) |
| 69 |
68
|
adantr |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( x -s 1s ) e. No ) |
| 70 |
31
|
snelpw |
|- ( ( x -s 1s ) e. No <-> { ( x -s 1s ) } e. ~P No ) |
| 71 |
69 70
|
sylib |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> { ( x -s 1s ) } e. ~P No ) |
| 72 |
|
nulssgt |
|- ( { ( x -s 1s ) } e. ~P No -> { ( x -s 1s ) } < |
| 73 |
71 72
|
syl |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> { ( x -s 1s ) } < |
| 74 |
44
|
snelpw |
|- ( 0s e. No <-> { 0s } e. ~P No ) |
| 75 |
21 74
|
mpbi |
|- { 0s } e. ~P No |
| 76 |
|
nulssgt |
|- ( { 0s } e. ~P No -> { 0s } < |
| 77 |
75 76
|
mp1i |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> { 0s } < |
| 78 |
|
simpr |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> x = ( { ( x -s 1s ) } |s (/) ) ) |
| 79 |
|
df-1s |
|- 1s = ( { 0s } |s (/) ) |
| 80 |
79
|
a1i |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> 1s = ( { 0s } |s (/) ) ) |
| 81 |
73 77 78 80
|
addsunif |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( x +s 1s ) = ( ( { a | E. b e. { ( x -s 1s ) } a = ( b +s 1s ) } u. { a | E. b e. { 0s } a = ( x +s b ) } ) |s ( { a | E. b e. (/) a = ( b +s 1s ) } u. { a | E. b e. (/) a = ( x +s b ) } ) ) ) |
| 82 |
35
|
adantr |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> x e. No ) |
| 83 |
|
pncans |
|- ( ( x e. No /\ 1s e. No ) -> ( ( x +s 1s ) -s 1s ) = x ) |
| 84 |
82 22 83
|
sylancl |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( ( x +s 1s ) -s 1s ) = x ) |
| 85 |
84
|
sneqd |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> { ( ( x +s 1s ) -s 1s ) } = { x } ) |
| 86 |
85
|
oveq1d |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( { ( ( x +s 1s ) -s 1s ) } |s (/) ) = ( { x } |s (/) ) ) |
| 87 |
66 81 86
|
3eqtr4d |
|- ( ( x e. NN0_s /\ x = ( { ( x -s 1s ) } |s (/) ) ) -> ( x +s 1s ) = ( { ( ( x +s 1s ) -s 1s ) } |s (/) ) ) |
| 88 |
87
|
ex |
|- ( x e. NN0_s -> ( x = ( { ( x -s 1s ) } |s (/) ) -> ( x +s 1s ) = ( { ( ( x +s 1s ) -s 1s ) } |s (/) ) ) ) |
| 89 |
5 10 15 20 30 88
|
n0sind |
|- ( A e. NN0_s -> A = ( { ( A -s 1s ) } |s (/) ) ) |