Metamath Proof Explorer


Theorem n0scut

Description: A cut form for surreal naturals. (Contributed by Scott Fenton, 2-Apr-2025)

Ref Expression
Assertion n0scut A 0s A = A - s 1 s | s

Proof

Step Hyp Ref Expression
1 id y = 0 s y = 0 s
2 oveq1 y = 0 s y - s 1 s = 0 s - s 1 s
3 2 sneqd y = 0 s y - s 1 s = 0 s - s 1 s
4 3 oveq1d y = 0 s y - s 1 s | s = 0 s - s 1 s | s
5 1 4 eqeq12d y = 0 s y = y - s 1 s | s 0 s = 0 s - s 1 s | s
6 id y = x y = x
7 oveq1 y = x y - s 1 s = x - s 1 s
8 7 sneqd y = x y - s 1 s = x - s 1 s
9 8 oveq1d y = x y - s 1 s | s = x - s 1 s | s
10 6 9 eqeq12d y = x y = y - s 1 s | s x = x - s 1 s | s
11 id y = x + s 1 s y = x + s 1 s
12 oveq1 y = x + s 1 s y - s 1 s = x + s 1 s - s 1 s
13 12 sneqd y = x + s 1 s y - s 1 s = x + s 1 s - s 1 s
14 13 oveq1d y = x + s 1 s y - s 1 s | s = x + s 1 s - s 1 s | s
15 11 14 eqeq12d y = x + s 1 s y = y - s 1 s | s x + s 1 s = x + s 1 s - s 1 s | s
16 id y = A y = A
17 oveq1 y = A y - s 1 s = A - s 1 s
18 17 sneqd y = A y - s 1 s = A - s 1 s
19 18 oveq1d y = A y - s 1 s | s = A - s 1 s | s
20 16 19 eqeq12d y = A y = y - s 1 s | s A = A - s 1 s | s
21 0sno 0 s No
22 1sno 1 s No
23 subscl 0 s No 1 s No 0 s - s 1 s No
24 21 22 23 mp2an 0 s - s 1 s No
25 24 a1i 0 s - s 1 s No
26 21 a1i 0 s No
27 0slt1s 0 s < s 1 s
28 addslid 1 s No 0 s + s 1 s = 1 s
29 22 28 ax-mp 0 s + s 1 s = 1 s
30 27 29 breqtrri 0 s < s 0 s + s 1 s
31 22 a1i 1 s No
32 26 31 26 sltsubaddd 0 s - s 1 s < s 0 s 0 s < s 0 s + s 1 s
33 30 32 mpbiri 0 s - s 1 s < s 0 s
34 25 26 33 ssltsn 0 s - s 1 s s 0 s
35 21 elexi 0 s V
36 35 snelpw 0 s No 0 s 𝒫 No
37 21 36 mpbi 0 s 𝒫 No
38 nulssgt 0 s 𝒫 No 0 s s
39 37 38 ax-mp 0 s s
40 39 a1i 0 s s
41 34 40 cuteq0 0 s - s 1 s | s = 0 s
42 41 mptru 0 s - s 1 s | s = 0 s
43 42 eqcomi 0 s = 0 s - s 1 s | s
44 ovex x - s 1 s V
45 oveq1 b = x - s 1 s b + s 1 s = x - s 1 s + s 1 s
46 45 eqeq2d b = x - s 1 s a = b + s 1 s a = x - s 1 s + s 1 s
47 44 46 rexsn b x - s 1 s a = b + s 1 s a = x - s 1 s + s 1 s
48 n0sno x 0s x No
49 npcans x No 1 s No x - s 1 s + s 1 s = x
50 48 22 49 sylancl x 0s x - s 1 s + s 1 s = x
51 50 adantr x 0s x = x - s 1 s | s x - s 1 s + s 1 s = x
52 51 eqeq2d x 0s x = x - s 1 s | s a = x - s 1 s + s 1 s a = x
53 47 52 bitrid x 0s x = x - s 1 s | s b x - s 1 s a = b + s 1 s a = x
54 53 alrimiv x 0s x = x - s 1 s | s a b x - s 1 s a = b + s 1 s a = x
55 absn a | b x - s 1 s a = b + s 1 s = x a b x - s 1 s a = b + s 1 s a = x
56 54 55 sylibr x 0s x = x - s 1 s | s a | b x - s 1 s a = b + s 1 s = x
57 oveq2 b = 0 s x + s b = x + s 0 s
58 57 eqeq2d b = 0 s a = x + s b a = x + s 0 s
59 35 58 rexsn b 0 s a = x + s b a = x + s 0 s
60 48 addsridd x 0s x + s 0 s = x
61 60 adantr x 0s x = x - s 1 s | s x + s 0 s = x
62 61 eqeq2d x 0s x = x - s 1 s | s a = x + s 0 s a = x
63 59 62 bitrid x 0s x = x - s 1 s | s b 0 s a = x + s b a = x
64 63 alrimiv x 0s x = x - s 1 s | s a b 0 s a = x + s b a = x
65 absn a | b 0 s a = x + s b = x a b 0 s a = x + s b a = x
66 64 65 sylibr x 0s x = x - s 1 s | s a | b 0 s a = x + s b = x
67 56 66 uneq12d x 0s x = x - s 1 s | s a | b x - s 1 s a = b + s 1 s a | b 0 s a = x + s b = x x
68 unidm x x = x
69 67 68 eqtrdi x 0s x = x - s 1 s | s a | b x - s 1 s a = b + s 1 s a | b 0 s a = x + s b = x
70 rex0 ¬ b a = b + s 1 s
71 70 abf a | b a = b + s 1 s =
72 rex0 ¬ b a = x + s b
73 72 abf a | b a = x + s b =
74 71 73 uneq12i a | b a = b + s 1 s a | b a = x + s b =
75 un0 =
76 74 75 eqtri a | b a = b + s 1 s a | b a = x + s b =
77 76 a1i x 0s x = x - s 1 s | s a | b a = b + s 1 s a | b a = x + s b =
78 69 77 oveq12d x 0s x = x - s 1 s | s a | b x - s 1 s a = b + s 1 s a | b 0 s a = x + s b | s a | b a = b + s 1 s a | b a = x + s b = x | s
79 subscl x No 1 s No x - s 1 s No
80 48 22 79 sylancl x 0s x - s 1 s No
81 80 adantr x 0s x = x - s 1 s | s x - s 1 s No
82 44 snelpw x - s 1 s No x - s 1 s 𝒫 No
83 81 82 sylib x 0s x = x - s 1 s | s x - s 1 s 𝒫 No
84 nulssgt x - s 1 s 𝒫 No x - s 1 s s
85 83 84 syl x 0s x = x - s 1 s | s x - s 1 s s
86 39 a1i x 0s x = x - s 1 s | s 0 s s
87 simpr x 0s x = x - s 1 s | s x = x - s 1 s | s
88 df-1s 1 s = 0 s | s
89 88 a1i x 0s x = x - s 1 s | s 1 s = 0 s | s
90 85 86 87 89 addsunif x 0s x = x - s 1 s | s x + s 1 s = a | b x - s 1 s a = b + s 1 s a | b 0 s a = x + s b | s a | b a = b + s 1 s a | b a = x + s b
91 48 adantr x 0s x = x - s 1 s | s x No
92 pncans x No 1 s No x + s 1 s - s 1 s = x
93 91 22 92 sylancl x 0s x = x - s 1 s | s x + s 1 s - s 1 s = x
94 93 sneqd x 0s x = x - s 1 s | s x + s 1 s - s 1 s = x
95 94 oveq1d x 0s x = x - s 1 s | s x + s 1 s - s 1 s | s = x | s
96 78 90 95 3eqtr4d x 0s x = x - s 1 s | s x + s 1 s = x + s 1 s - s 1 s | s
97 96 ex x 0s x = x - s 1 s | s x + s 1 s = x + s 1 s - s 1 s | s
98 5 10 15 20 43 97 n0sind A 0s A = A - s 1 s | s