| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|
| 2 |
|
oveq1 |
|
| 3 |
2
|
sneqd |
|
| 4 |
3
|
oveq1d |
|
| 5 |
1 4
|
eqeq12d |
|
| 6 |
|
id |
|
| 7 |
|
oveq1 |
|
| 8 |
7
|
sneqd |
|
| 9 |
8
|
oveq1d |
|
| 10 |
6 9
|
eqeq12d |
|
| 11 |
|
id |
|
| 12 |
|
oveq1 |
|
| 13 |
12
|
sneqd |
|
| 14 |
13
|
oveq1d |
|
| 15 |
11 14
|
eqeq12d |
|
| 16 |
|
id |
|
| 17 |
|
oveq1 |
|
| 18 |
17
|
sneqd |
|
| 19 |
18
|
oveq1d |
|
| 20 |
16 19
|
eqeq12d |
|
| 21 |
|
0sno |
|
| 22 |
|
1sno |
|
| 23 |
|
subscl |
|
| 24 |
21 22 23
|
mp2an |
|
| 25 |
24
|
a1i |
|
| 26 |
21
|
a1i |
|
| 27 |
26
|
sltm1d |
|
| 28 |
25 27
|
cutneg |
|
| 29 |
28
|
mptru |
|
| 30 |
29
|
eqcomi |
|
| 31 |
|
ovex |
|
| 32 |
|
oveq1 |
|
| 33 |
32
|
eqeq2d |
|
| 34 |
31 33
|
rexsn |
|
| 35 |
|
n0sno |
|
| 36 |
|
npcans |
|
| 37 |
35 22 36
|
sylancl |
|
| 38 |
37
|
adantr |
|
| 39 |
38
|
eqeq2d |
|
| 40 |
34 39
|
bitrid |
|
| 41 |
40
|
alrimiv |
|
| 42 |
|
absn |
|
| 43 |
41 42
|
sylibr |
|
| 44 |
21
|
elexi |
|
| 45 |
|
oveq2 |
|
| 46 |
45
|
eqeq2d |
|
| 47 |
44 46
|
rexsn |
|
| 48 |
35
|
addsridd |
|
| 49 |
48
|
adantr |
|
| 50 |
49
|
eqeq2d |
|
| 51 |
47 50
|
bitrid |
|
| 52 |
51
|
alrimiv |
|
| 53 |
|
absn |
|
| 54 |
52 53
|
sylibr |
|
| 55 |
43 54
|
uneq12d |
|
| 56 |
|
unidm |
|
| 57 |
55 56
|
eqtrdi |
|
| 58 |
|
rex0 |
|
| 59 |
58
|
abf |
|
| 60 |
|
rex0 |
|
| 61 |
60
|
abf |
|
| 62 |
59 61
|
uneq12i |
|
| 63 |
|
un0 |
|
| 64 |
62 63
|
eqtri |
|
| 65 |
64
|
a1i |
|
| 66 |
57 65
|
oveq12d |
|
| 67 |
|
subscl |
|
| 68 |
35 22 67
|
sylancl |
|
| 69 |
68
|
adantr |
|
| 70 |
31
|
snelpw |
|
| 71 |
69 70
|
sylib |
|
| 72 |
|
nulssgt |
|
| 73 |
71 72
|
syl |
|
| 74 |
44
|
snelpw |
|
| 75 |
21 74
|
mpbi |
|
| 76 |
|
nulssgt |
|
| 77 |
75 76
|
mp1i |
|
| 78 |
|
simpr |
|
| 79 |
|
df-1s |
|
| 80 |
79
|
a1i |
|
| 81 |
73 77 78 80
|
addsunif |
|
| 82 |
35
|
adantr |
|
| 83 |
|
pncans |
|
| 84 |
82 22 83
|
sylancl |
|
| 85 |
84
|
sneqd |
|
| 86 |
85
|
oveq1d |
|
| 87 |
66 81 86
|
3eqtr4d |
|
| 88 |
87
|
ex |
|
| 89 |
5 10 15 20 30 88
|
n0sind |
|