Metamath Proof Explorer


Theorem n0scut

Description: A cut form for non-negative surreal integers. (Contributed by Scott Fenton, 2-Apr-2025)

Ref Expression
Assertion n0scut A 0s A = A - s 1 s | s

Proof

Step Hyp Ref Expression
1 id y = 0 s y = 0 s
2 oveq1 y = 0 s y - s 1 s = 0 s - s 1 s
3 2 sneqd y = 0 s y - s 1 s = 0 s - s 1 s
4 3 oveq1d y = 0 s y - s 1 s | s = 0 s - s 1 s | s
5 1 4 eqeq12d y = 0 s y = y - s 1 s | s 0 s = 0 s - s 1 s | s
6 id y = x y = x
7 oveq1 y = x y - s 1 s = x - s 1 s
8 7 sneqd y = x y - s 1 s = x - s 1 s
9 8 oveq1d y = x y - s 1 s | s = x - s 1 s | s
10 6 9 eqeq12d y = x y = y - s 1 s | s x = x - s 1 s | s
11 id y = x + s 1 s y = x + s 1 s
12 oveq1 y = x + s 1 s y - s 1 s = x + s 1 s - s 1 s
13 12 sneqd y = x + s 1 s y - s 1 s = x + s 1 s - s 1 s
14 13 oveq1d y = x + s 1 s y - s 1 s | s = x + s 1 s - s 1 s | s
15 11 14 eqeq12d y = x + s 1 s y = y - s 1 s | s x + s 1 s = x + s 1 s - s 1 s | s
16 id y = A y = A
17 oveq1 y = A y - s 1 s = A - s 1 s
18 17 sneqd y = A y - s 1 s = A - s 1 s
19 18 oveq1d y = A y - s 1 s | s = A - s 1 s | s
20 16 19 eqeq12d y = A y = y - s 1 s | s A = A - s 1 s | s
21 0sno 0 s No
22 1sno 1 s No
23 subscl 0 s No 1 s No 0 s - s 1 s No
24 21 22 23 mp2an 0 s - s 1 s No
25 24 a1i 0 s - s 1 s No
26 21 a1i 0 s No
27 26 sltm1d 0 s - s 1 s < s 0 s
28 25 27 cutneg 0 s - s 1 s | s = 0 s
29 28 mptru 0 s - s 1 s | s = 0 s
30 29 eqcomi 0 s = 0 s - s 1 s | s
31 ovex x - s 1 s V
32 oveq1 b = x - s 1 s b + s 1 s = x - s 1 s + s 1 s
33 32 eqeq2d b = x - s 1 s a = b + s 1 s a = x - s 1 s + s 1 s
34 31 33 rexsn b x - s 1 s a = b + s 1 s a = x - s 1 s + s 1 s
35 n0sno x 0s x No
36 npcans x No 1 s No x - s 1 s + s 1 s = x
37 35 22 36 sylancl x 0s x - s 1 s + s 1 s = x
38 37 adantr x 0s x = x - s 1 s | s x - s 1 s + s 1 s = x
39 38 eqeq2d x 0s x = x - s 1 s | s a = x - s 1 s + s 1 s a = x
40 34 39 bitrid x 0s x = x - s 1 s | s b x - s 1 s a = b + s 1 s a = x
41 40 alrimiv x 0s x = x - s 1 s | s a b x - s 1 s a = b + s 1 s a = x
42 absn a | b x - s 1 s a = b + s 1 s = x a b x - s 1 s a = b + s 1 s a = x
43 41 42 sylibr x 0s x = x - s 1 s | s a | b x - s 1 s a = b + s 1 s = x
44 21 elexi 0 s V
45 oveq2 b = 0 s x + s b = x + s 0 s
46 45 eqeq2d b = 0 s a = x + s b a = x + s 0 s
47 44 46 rexsn b 0 s a = x + s b a = x + s 0 s
48 35 addsridd x 0s x + s 0 s = x
49 48 adantr x 0s x = x - s 1 s | s x + s 0 s = x
50 49 eqeq2d x 0s x = x - s 1 s | s a = x + s 0 s a = x
51 47 50 bitrid x 0s x = x - s 1 s | s b 0 s a = x + s b a = x
52 51 alrimiv x 0s x = x - s 1 s | s a b 0 s a = x + s b a = x
53 absn a | b 0 s a = x + s b = x a b 0 s a = x + s b a = x
54 52 53 sylibr x 0s x = x - s 1 s | s a | b 0 s a = x + s b = x
55 43 54 uneq12d x 0s x = x - s 1 s | s a | b x - s 1 s a = b + s 1 s a | b 0 s a = x + s b = x x
56 unidm x x = x
57 55 56 eqtrdi x 0s x = x - s 1 s | s a | b x - s 1 s a = b + s 1 s a | b 0 s a = x + s b = x
58 rex0 ¬ b a = b + s 1 s
59 58 abf a | b a = b + s 1 s =
60 rex0 ¬ b a = x + s b
61 60 abf a | b a = x + s b =
62 59 61 uneq12i a | b a = b + s 1 s a | b a = x + s b =
63 un0 =
64 62 63 eqtri a | b a = b + s 1 s a | b a = x + s b =
65 64 a1i x 0s x = x - s 1 s | s a | b a = b + s 1 s a | b a = x + s b =
66 57 65 oveq12d x 0s x = x - s 1 s | s a | b x - s 1 s a = b + s 1 s a | b 0 s a = x + s b | s a | b a = b + s 1 s a | b a = x + s b = x | s
67 subscl x No 1 s No x - s 1 s No
68 35 22 67 sylancl x 0s x - s 1 s No
69 68 adantr x 0s x = x - s 1 s | s x - s 1 s No
70 31 snelpw x - s 1 s No x - s 1 s 𝒫 No
71 69 70 sylib x 0s x = x - s 1 s | s x - s 1 s 𝒫 No
72 nulssgt x - s 1 s 𝒫 No x - s 1 s s
73 71 72 syl x 0s x = x - s 1 s | s x - s 1 s s
74 44 snelpw 0 s No 0 s 𝒫 No
75 21 74 mpbi 0 s 𝒫 No
76 nulssgt 0 s 𝒫 No 0 s s
77 75 76 mp1i x 0s x = x - s 1 s | s 0 s s
78 simpr x 0s x = x - s 1 s | s x = x - s 1 s | s
79 df-1s 1 s = 0 s | s
80 79 a1i x 0s x = x - s 1 s | s 1 s = 0 s | s
81 73 77 78 80 addsunif x 0s x = x - s 1 s | s x + s 1 s = a | b x - s 1 s a = b + s 1 s a | b 0 s a = x + s b | s a | b a = b + s 1 s a | b a = x + s b
82 35 adantr x 0s x = x - s 1 s | s x No
83 pncans x No 1 s No x + s 1 s - s 1 s = x
84 82 22 83 sylancl x 0s x = x - s 1 s | s x + s 1 s - s 1 s = x
85 84 sneqd x 0s x = x - s 1 s | s x + s 1 s - s 1 s = x
86 85 oveq1d x 0s x = x - s 1 s | s x + s 1 s - s 1 s | s = x | s
87 66 81 86 3eqtr4d x 0s x = x - s 1 s | s x + s 1 s = x + s 1 s - s 1 s | s
88 87 ex x 0s x = x - s 1 s | s x + s 1 s = x + s 1 s - s 1 s | s
89 5 10 15 20 30 88 n0sind A 0s A = A - s 1 s | s