Metamath Proof Explorer


Theorem n0sind

Description: Principle of Mathematical Induction (inference schema). Compare nnind and finds . (Contributed by Scott Fenton, 17-Mar-2025)

Ref Expression
Hypotheses n0sind.1 x = 0 s φ ψ
n0sind.2 x = y φ χ
n0sind.3 x = y + s 1 s φ θ
n0sind.4 x = A φ τ
n0sind.5 ψ
n0sind.6 y 0s χ θ
Assertion n0sind A 0s τ

Proof

Step Hyp Ref Expression
1 n0sind.1 x = 0 s φ ψ
2 n0sind.2 x = y φ χ
3 n0sind.3 x = y + s 1 s φ θ
4 n0sind.4 x = A φ τ
5 n0sind.5 ψ
6 n0sind.6 y 0s χ θ
7 tru
8 df-n0s 0s = rec n V n + s 1 s 0 s ω
9 8 a1i 0s = rec n V n + s 1 s 0 s ω
10 0sno 0 s No
11 10 a1i 0 s No
12 5 a1i ψ
13 6 adantl y 0s χ θ
14 9 11 1 2 3 4 12 13 noseqinds A 0s τ
15 7 14 mpan A 0s τ