| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝑦  =   0s   →  𝑦  =   0s  ) | 
						
							| 2 |  | oveq1 | ⊢ ( 𝑦  =   0s   →  ( 𝑦  -s   1s  )  =  (  0s   -s   1s  ) ) | 
						
							| 3 | 2 | sneqd | ⊢ ( 𝑦  =   0s   →  { ( 𝑦  -s   1s  ) }  =  { (  0s   -s   1s  ) } ) | 
						
							| 4 | 3 | oveq1d | ⊢ ( 𝑦  =   0s   →  ( { ( 𝑦  -s   1s  ) }  |s  ∅ )  =  ( { (  0s   -s   1s  ) }  |s  ∅ ) ) | 
						
							| 5 | 1 4 | eqeq12d | ⊢ ( 𝑦  =   0s   →  ( 𝑦  =  ( { ( 𝑦  -s   1s  ) }  |s  ∅ )  ↔   0s   =  ( { (  0s   -s   1s  ) }  |s  ∅ ) ) ) | 
						
							| 6 |  | id | ⊢ ( 𝑦  =  𝑥  →  𝑦  =  𝑥 ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  -s   1s  )  =  ( 𝑥  -s   1s  ) ) | 
						
							| 8 | 7 | sneqd | ⊢ ( 𝑦  =  𝑥  →  { ( 𝑦  -s   1s  ) }  =  { ( 𝑥  -s   1s  ) } ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑦  =  𝑥  →  ( { ( 𝑦  -s   1s  ) }  |s  ∅ )  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) ) | 
						
							| 10 | 6 9 | eqeq12d | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  =  ( { ( 𝑦  -s   1s  ) }  |s  ∅ )  ↔  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) ) ) | 
						
							| 11 |  | id | ⊢ ( 𝑦  =  ( 𝑥  +s   1s  )  →  𝑦  =  ( 𝑥  +s   1s  ) ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑥  +s   1s  )  →  ( 𝑦  -s   1s  )  =  ( ( 𝑥  +s   1s  )  -s   1s  ) ) | 
						
							| 13 | 12 | sneqd | ⊢ ( 𝑦  =  ( 𝑥  +s   1s  )  →  { ( 𝑦  -s   1s  ) }  =  { ( ( 𝑥  +s   1s  )  -s   1s  ) } ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( 𝑦  =  ( 𝑥  +s   1s  )  →  ( { ( 𝑦  -s   1s  ) }  |s  ∅ )  =  ( { ( ( 𝑥  +s   1s  )  -s   1s  ) }  |s  ∅ ) ) | 
						
							| 15 | 11 14 | eqeq12d | ⊢ ( 𝑦  =  ( 𝑥  +s   1s  )  →  ( 𝑦  =  ( { ( 𝑦  -s   1s  ) }  |s  ∅ )  ↔  ( 𝑥  +s   1s  )  =  ( { ( ( 𝑥  +s   1s  )  -s   1s  ) }  |s  ∅ ) ) ) | 
						
							| 16 |  | id | ⊢ ( 𝑦  =  𝐴  →  𝑦  =  𝐴 ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  -s   1s  )  =  ( 𝐴  -s   1s  ) ) | 
						
							| 18 | 17 | sneqd | ⊢ ( 𝑦  =  𝐴  →  { ( 𝑦  -s   1s  ) }  =  { ( 𝐴  -s   1s  ) } ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( 𝑦  =  𝐴  →  ( { ( 𝑦  -s   1s  ) }  |s  ∅ )  =  ( { ( 𝐴  -s   1s  ) }  |s  ∅ ) ) | 
						
							| 20 | 16 19 | eqeq12d | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  =  ( { ( 𝑦  -s   1s  ) }  |s  ∅ )  ↔  𝐴  =  ( { ( 𝐴  -s   1s  ) }  |s  ∅ ) ) ) | 
						
							| 21 |  | 0sno | ⊢  0s   ∈   No | 
						
							| 22 |  | 1sno | ⊢  1s   ∈   No | 
						
							| 23 |  | subscl | ⊢ ( (  0s   ∈   No   ∧   1s   ∈   No  )  →  (  0s   -s   1s  )  ∈   No  ) | 
						
							| 24 | 21 22 23 | mp2an | ⊢ (  0s   -s   1s  )  ∈   No | 
						
							| 25 | 24 | a1i | ⊢ ( ⊤  →  (  0s   -s   1s  )  ∈   No  ) | 
						
							| 26 | 21 | a1i | ⊢ ( ⊤  →   0s   ∈   No  ) | 
						
							| 27 |  | 0slt1s | ⊢  0s   <s   1s | 
						
							| 28 |  | addslid | ⊢ (  1s   ∈   No   →  (  0s   +s   1s  )  =   1s  ) | 
						
							| 29 | 22 28 | ax-mp | ⊢ (  0s   +s   1s  )  =   1s | 
						
							| 30 | 27 29 | breqtrri | ⊢  0s   <s  (  0s   +s   1s  ) | 
						
							| 31 | 22 | a1i | ⊢ ( ⊤  →   1s   ∈   No  ) | 
						
							| 32 | 26 31 26 | sltsubaddd | ⊢ ( ⊤  →  ( (  0s   -s   1s  )  <s   0s   ↔   0s   <s  (  0s   +s   1s  ) ) ) | 
						
							| 33 | 30 32 | mpbiri | ⊢ ( ⊤  →  (  0s   -s   1s  )  <s   0s  ) | 
						
							| 34 | 25 26 33 | ssltsn | ⊢ ( ⊤  →  { (  0s   -s   1s  ) }  <<s  {  0s  } ) | 
						
							| 35 | 21 | elexi | ⊢  0s   ∈  V | 
						
							| 36 | 35 | snelpw | ⊢ (  0s   ∈   No   ↔  {  0s  }  ∈  𝒫   No  ) | 
						
							| 37 | 21 36 | mpbi | ⊢ {  0s  }  ∈  𝒫   No | 
						
							| 38 |  | nulssgt | ⊢ ( {  0s  }  ∈  𝒫   No   →  {  0s  }  <<s  ∅ ) | 
						
							| 39 | 37 38 | ax-mp | ⊢ {  0s  }  <<s  ∅ | 
						
							| 40 | 39 | a1i | ⊢ ( ⊤  →  {  0s  }  <<s  ∅ ) | 
						
							| 41 | 34 40 | cuteq0 | ⊢ ( ⊤  →  ( { (  0s   -s   1s  ) }  |s  ∅ )  =   0s  ) | 
						
							| 42 | 41 | mptru | ⊢ ( { (  0s   -s   1s  ) }  |s  ∅ )  =   0s | 
						
							| 43 | 42 | eqcomi | ⊢  0s   =  ( { (  0s   -s   1s  ) }  |s  ∅ ) | 
						
							| 44 |  | ovex | ⊢ ( 𝑥  -s   1s  )  ∈  V | 
						
							| 45 |  | oveq1 | ⊢ ( 𝑏  =  ( 𝑥  -s   1s  )  →  ( 𝑏  +s   1s  )  =  ( ( 𝑥  -s   1s  )  +s   1s  ) ) | 
						
							| 46 | 45 | eqeq2d | ⊢ ( 𝑏  =  ( 𝑥  -s   1s  )  →  ( 𝑎  =  ( 𝑏  +s   1s  )  ↔  𝑎  =  ( ( 𝑥  -s   1s  )  +s   1s  ) ) ) | 
						
							| 47 | 44 46 | rexsn | ⊢ ( ∃ 𝑏  ∈  { ( 𝑥  -s   1s  ) } 𝑎  =  ( 𝑏  +s   1s  )  ↔  𝑎  =  ( ( 𝑥  -s   1s  )  +s   1s  ) ) | 
						
							| 48 |  | n0sno | ⊢ ( 𝑥  ∈  ℕ0s  →  𝑥  ∈   No  ) | 
						
							| 49 |  | npcans | ⊢ ( ( 𝑥  ∈   No   ∧   1s   ∈   No  )  →  ( ( 𝑥  -s   1s  )  +s   1s  )  =  𝑥 ) | 
						
							| 50 | 48 22 49 | sylancl | ⊢ ( 𝑥  ∈  ℕ0s  →  ( ( 𝑥  -s   1s  )  +s   1s  )  =  𝑥 ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  ( ( 𝑥  -s   1s  )  +s   1s  )  =  𝑥 ) | 
						
							| 52 | 51 | eqeq2d | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  ( 𝑎  =  ( ( 𝑥  -s   1s  )  +s   1s  )  ↔  𝑎  =  𝑥 ) ) | 
						
							| 53 | 47 52 | bitrid | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  ( ∃ 𝑏  ∈  { ( 𝑥  -s   1s  ) } 𝑎  =  ( 𝑏  +s   1s  )  ↔  𝑎  =  𝑥 ) ) | 
						
							| 54 | 53 | alrimiv | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  ∀ 𝑎 ( ∃ 𝑏  ∈  { ( 𝑥  -s   1s  ) } 𝑎  =  ( 𝑏  +s   1s  )  ↔  𝑎  =  𝑥 ) ) | 
						
							| 55 |  | absn | ⊢ ( { 𝑎  ∣  ∃ 𝑏  ∈  { ( 𝑥  -s   1s  ) } 𝑎  =  ( 𝑏  +s   1s  ) }  =  { 𝑥 }  ↔  ∀ 𝑎 ( ∃ 𝑏  ∈  { ( 𝑥  -s   1s  ) } 𝑎  =  ( 𝑏  +s   1s  )  ↔  𝑎  =  𝑥 ) ) | 
						
							| 56 | 54 55 | sylibr | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  { 𝑎  ∣  ∃ 𝑏  ∈  { ( 𝑥  -s   1s  ) } 𝑎  =  ( 𝑏  +s   1s  ) }  =  { 𝑥 } ) | 
						
							| 57 |  | oveq2 | ⊢ ( 𝑏  =   0s   →  ( 𝑥  +s  𝑏 )  =  ( 𝑥  +s   0s  ) ) | 
						
							| 58 | 57 | eqeq2d | ⊢ ( 𝑏  =   0s   →  ( 𝑎  =  ( 𝑥  +s  𝑏 )  ↔  𝑎  =  ( 𝑥  +s   0s  ) ) ) | 
						
							| 59 | 35 58 | rexsn | ⊢ ( ∃ 𝑏  ∈  {  0s  } 𝑎  =  ( 𝑥  +s  𝑏 )  ↔  𝑎  =  ( 𝑥  +s   0s  ) ) | 
						
							| 60 | 48 | addsridd | ⊢ ( 𝑥  ∈  ℕ0s  →  ( 𝑥  +s   0s  )  =  𝑥 ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  ( 𝑥  +s   0s  )  =  𝑥 ) | 
						
							| 62 | 61 | eqeq2d | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  ( 𝑎  =  ( 𝑥  +s   0s  )  ↔  𝑎  =  𝑥 ) ) | 
						
							| 63 | 59 62 | bitrid | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  ( ∃ 𝑏  ∈  {  0s  } 𝑎  =  ( 𝑥  +s  𝑏 )  ↔  𝑎  =  𝑥 ) ) | 
						
							| 64 | 63 | alrimiv | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  ∀ 𝑎 ( ∃ 𝑏  ∈  {  0s  } 𝑎  =  ( 𝑥  +s  𝑏 )  ↔  𝑎  =  𝑥 ) ) | 
						
							| 65 |  | absn | ⊢ ( { 𝑎  ∣  ∃ 𝑏  ∈  {  0s  } 𝑎  =  ( 𝑥  +s  𝑏 ) }  =  { 𝑥 }  ↔  ∀ 𝑎 ( ∃ 𝑏  ∈  {  0s  } 𝑎  =  ( 𝑥  +s  𝑏 )  ↔  𝑎  =  𝑥 ) ) | 
						
							| 66 | 64 65 | sylibr | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  { 𝑎  ∣  ∃ 𝑏  ∈  {  0s  } 𝑎  =  ( 𝑥  +s  𝑏 ) }  =  { 𝑥 } ) | 
						
							| 67 | 56 66 | uneq12d | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  ( { 𝑎  ∣  ∃ 𝑏  ∈  { ( 𝑥  -s   1s  ) } 𝑎  =  ( 𝑏  +s   1s  ) }  ∪  { 𝑎  ∣  ∃ 𝑏  ∈  {  0s  } 𝑎  =  ( 𝑥  +s  𝑏 ) } )  =  ( { 𝑥 }  ∪  { 𝑥 } ) ) | 
						
							| 68 |  | unidm | ⊢ ( { 𝑥 }  ∪  { 𝑥 } )  =  { 𝑥 } | 
						
							| 69 | 67 68 | eqtrdi | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  ( { 𝑎  ∣  ∃ 𝑏  ∈  { ( 𝑥  -s   1s  ) } 𝑎  =  ( 𝑏  +s   1s  ) }  ∪  { 𝑎  ∣  ∃ 𝑏  ∈  {  0s  } 𝑎  =  ( 𝑥  +s  𝑏 ) } )  =  { 𝑥 } ) | 
						
							| 70 |  | rex0 | ⊢ ¬  ∃ 𝑏  ∈  ∅ 𝑎  =  ( 𝑏  +s   1s  ) | 
						
							| 71 | 70 | abf | ⊢ { 𝑎  ∣  ∃ 𝑏  ∈  ∅ 𝑎  =  ( 𝑏  +s   1s  ) }  =  ∅ | 
						
							| 72 |  | rex0 | ⊢ ¬  ∃ 𝑏  ∈  ∅ 𝑎  =  ( 𝑥  +s  𝑏 ) | 
						
							| 73 | 72 | abf | ⊢ { 𝑎  ∣  ∃ 𝑏  ∈  ∅ 𝑎  =  ( 𝑥  +s  𝑏 ) }  =  ∅ | 
						
							| 74 | 71 73 | uneq12i | ⊢ ( { 𝑎  ∣  ∃ 𝑏  ∈  ∅ 𝑎  =  ( 𝑏  +s   1s  ) }  ∪  { 𝑎  ∣  ∃ 𝑏  ∈  ∅ 𝑎  =  ( 𝑥  +s  𝑏 ) } )  =  ( ∅  ∪  ∅ ) | 
						
							| 75 |  | un0 | ⊢ ( ∅  ∪  ∅ )  =  ∅ | 
						
							| 76 | 74 75 | eqtri | ⊢ ( { 𝑎  ∣  ∃ 𝑏  ∈  ∅ 𝑎  =  ( 𝑏  +s   1s  ) }  ∪  { 𝑎  ∣  ∃ 𝑏  ∈  ∅ 𝑎  =  ( 𝑥  +s  𝑏 ) } )  =  ∅ | 
						
							| 77 | 76 | a1i | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  ( { 𝑎  ∣  ∃ 𝑏  ∈  ∅ 𝑎  =  ( 𝑏  +s   1s  ) }  ∪  { 𝑎  ∣  ∃ 𝑏  ∈  ∅ 𝑎  =  ( 𝑥  +s  𝑏 ) } )  =  ∅ ) | 
						
							| 78 | 69 77 | oveq12d | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  ( ( { 𝑎  ∣  ∃ 𝑏  ∈  { ( 𝑥  -s   1s  ) } 𝑎  =  ( 𝑏  +s   1s  ) }  ∪  { 𝑎  ∣  ∃ 𝑏  ∈  {  0s  } 𝑎  =  ( 𝑥  +s  𝑏 ) } )  |s  ( { 𝑎  ∣  ∃ 𝑏  ∈  ∅ 𝑎  =  ( 𝑏  +s   1s  ) }  ∪  { 𝑎  ∣  ∃ 𝑏  ∈  ∅ 𝑎  =  ( 𝑥  +s  𝑏 ) } ) )  =  ( { 𝑥 }  |s  ∅ ) ) | 
						
							| 79 |  | subscl | ⊢ ( ( 𝑥  ∈   No   ∧   1s   ∈   No  )  →  ( 𝑥  -s   1s  )  ∈   No  ) | 
						
							| 80 | 48 22 79 | sylancl | ⊢ ( 𝑥  ∈  ℕ0s  →  ( 𝑥  -s   1s  )  ∈   No  ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  ( 𝑥  -s   1s  )  ∈   No  ) | 
						
							| 82 | 44 | snelpw | ⊢ ( ( 𝑥  -s   1s  )  ∈   No   ↔  { ( 𝑥  -s   1s  ) }  ∈  𝒫   No  ) | 
						
							| 83 | 81 82 | sylib | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  { ( 𝑥  -s   1s  ) }  ∈  𝒫   No  ) | 
						
							| 84 |  | nulssgt | ⊢ ( { ( 𝑥  -s   1s  ) }  ∈  𝒫   No   →  { ( 𝑥  -s   1s  ) }  <<s  ∅ ) | 
						
							| 85 | 83 84 | syl | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  { ( 𝑥  -s   1s  ) }  <<s  ∅ ) | 
						
							| 86 | 39 | a1i | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  {  0s  }  <<s  ∅ ) | 
						
							| 87 |  | simpr | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) ) | 
						
							| 88 |  | df-1s | ⊢  1s   =  ( {  0s  }  |s  ∅ ) | 
						
							| 89 | 88 | a1i | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →   1s   =  ( {  0s  }  |s  ∅ ) ) | 
						
							| 90 | 85 86 87 89 | addsunif | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  ( 𝑥  +s   1s  )  =  ( ( { 𝑎  ∣  ∃ 𝑏  ∈  { ( 𝑥  -s   1s  ) } 𝑎  =  ( 𝑏  +s   1s  ) }  ∪  { 𝑎  ∣  ∃ 𝑏  ∈  {  0s  } 𝑎  =  ( 𝑥  +s  𝑏 ) } )  |s  ( { 𝑎  ∣  ∃ 𝑏  ∈  ∅ 𝑎  =  ( 𝑏  +s   1s  ) }  ∪  { 𝑎  ∣  ∃ 𝑏  ∈  ∅ 𝑎  =  ( 𝑥  +s  𝑏 ) } ) ) ) | 
						
							| 91 | 48 | adantr | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  𝑥  ∈   No  ) | 
						
							| 92 |  | pncans | ⊢ ( ( 𝑥  ∈   No   ∧   1s   ∈   No  )  →  ( ( 𝑥  +s   1s  )  -s   1s  )  =  𝑥 ) | 
						
							| 93 | 91 22 92 | sylancl | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  ( ( 𝑥  +s   1s  )  -s   1s  )  =  𝑥 ) | 
						
							| 94 | 93 | sneqd | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  { ( ( 𝑥  +s   1s  )  -s   1s  ) }  =  { 𝑥 } ) | 
						
							| 95 | 94 | oveq1d | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  ( { ( ( 𝑥  +s   1s  )  -s   1s  ) }  |s  ∅ )  =  ( { 𝑥 }  |s  ∅ ) ) | 
						
							| 96 | 78 90 95 | 3eqtr4d | ⊢ ( ( 𝑥  ∈  ℕ0s  ∧  𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ ) )  →  ( 𝑥  +s   1s  )  =  ( { ( ( 𝑥  +s   1s  )  -s   1s  ) }  |s  ∅ ) ) | 
						
							| 97 | 96 | ex | ⊢ ( 𝑥  ∈  ℕ0s  →  ( 𝑥  =  ( { ( 𝑥  -s   1s  ) }  |s  ∅ )  →  ( 𝑥  +s   1s  )  =  ( { ( ( 𝑥  +s   1s  )  -s   1s  ) }  |s  ∅ ) ) ) | 
						
							| 98 | 5 10 15 20 43 97 | n0sind | ⊢ ( 𝐴  ∈  ℕ0s  →  𝐴  =  ( { ( 𝐴  -s   1s  ) }  |s  ∅ ) ) |