| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝑦 = 0s → 𝑦 = 0s ) |
| 2 |
|
oveq1 |
⊢ ( 𝑦 = 0s → ( 𝑦 -s 1s ) = ( 0s -s 1s ) ) |
| 3 |
2
|
sneqd |
⊢ ( 𝑦 = 0s → { ( 𝑦 -s 1s ) } = { ( 0s -s 1s ) } ) |
| 4 |
3
|
oveq1d |
⊢ ( 𝑦 = 0s → ( { ( 𝑦 -s 1s ) } |s ∅ ) = ( { ( 0s -s 1s ) } |s ∅ ) ) |
| 5 |
1 4
|
eqeq12d |
⊢ ( 𝑦 = 0s → ( 𝑦 = ( { ( 𝑦 -s 1s ) } |s ∅ ) ↔ 0s = ( { ( 0s -s 1s ) } |s ∅ ) ) ) |
| 6 |
|
id |
⊢ ( 𝑦 = 𝑥 → 𝑦 = 𝑥 ) |
| 7 |
|
oveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 -s 1s ) = ( 𝑥 -s 1s ) ) |
| 8 |
7
|
sneqd |
⊢ ( 𝑦 = 𝑥 → { ( 𝑦 -s 1s ) } = { ( 𝑥 -s 1s ) } ) |
| 9 |
8
|
oveq1d |
⊢ ( 𝑦 = 𝑥 → ( { ( 𝑦 -s 1s ) } |s ∅ ) = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) |
| 10 |
6 9
|
eqeq12d |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = ( { ( 𝑦 -s 1s ) } |s ∅ ) ↔ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) ) |
| 11 |
|
id |
⊢ ( 𝑦 = ( 𝑥 +s 1s ) → 𝑦 = ( 𝑥 +s 1s ) ) |
| 12 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑥 +s 1s ) → ( 𝑦 -s 1s ) = ( ( 𝑥 +s 1s ) -s 1s ) ) |
| 13 |
12
|
sneqd |
⊢ ( 𝑦 = ( 𝑥 +s 1s ) → { ( 𝑦 -s 1s ) } = { ( ( 𝑥 +s 1s ) -s 1s ) } ) |
| 14 |
13
|
oveq1d |
⊢ ( 𝑦 = ( 𝑥 +s 1s ) → ( { ( 𝑦 -s 1s ) } |s ∅ ) = ( { ( ( 𝑥 +s 1s ) -s 1s ) } |s ∅ ) ) |
| 15 |
11 14
|
eqeq12d |
⊢ ( 𝑦 = ( 𝑥 +s 1s ) → ( 𝑦 = ( { ( 𝑦 -s 1s ) } |s ∅ ) ↔ ( 𝑥 +s 1s ) = ( { ( ( 𝑥 +s 1s ) -s 1s ) } |s ∅ ) ) ) |
| 16 |
|
id |
⊢ ( 𝑦 = 𝐴 → 𝑦 = 𝐴 ) |
| 17 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 -s 1s ) = ( 𝐴 -s 1s ) ) |
| 18 |
17
|
sneqd |
⊢ ( 𝑦 = 𝐴 → { ( 𝑦 -s 1s ) } = { ( 𝐴 -s 1s ) } ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝑦 = 𝐴 → ( { ( 𝑦 -s 1s ) } |s ∅ ) = ( { ( 𝐴 -s 1s ) } |s ∅ ) ) |
| 20 |
16 19
|
eqeq12d |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 = ( { ( 𝑦 -s 1s ) } |s ∅ ) ↔ 𝐴 = ( { ( 𝐴 -s 1s ) } |s ∅ ) ) ) |
| 21 |
|
0sno |
⊢ 0s ∈ No |
| 22 |
|
1sno |
⊢ 1s ∈ No |
| 23 |
|
subscl |
⊢ ( ( 0s ∈ No ∧ 1s ∈ No ) → ( 0s -s 1s ) ∈ No ) |
| 24 |
21 22 23
|
mp2an |
⊢ ( 0s -s 1s ) ∈ No |
| 25 |
24
|
a1i |
⊢ ( ⊤ → ( 0s -s 1s ) ∈ No ) |
| 26 |
21
|
a1i |
⊢ ( ⊤ → 0s ∈ No ) |
| 27 |
26
|
sltm1d |
⊢ ( ⊤ → ( 0s -s 1s ) <s 0s ) |
| 28 |
25 27
|
cutneg |
⊢ ( ⊤ → ( { ( 0s -s 1s ) } |s ∅ ) = 0s ) |
| 29 |
28
|
mptru |
⊢ ( { ( 0s -s 1s ) } |s ∅ ) = 0s |
| 30 |
29
|
eqcomi |
⊢ 0s = ( { ( 0s -s 1s ) } |s ∅ ) |
| 31 |
|
ovex |
⊢ ( 𝑥 -s 1s ) ∈ V |
| 32 |
|
oveq1 |
⊢ ( 𝑏 = ( 𝑥 -s 1s ) → ( 𝑏 +s 1s ) = ( ( 𝑥 -s 1s ) +s 1s ) ) |
| 33 |
32
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑥 -s 1s ) → ( 𝑎 = ( 𝑏 +s 1s ) ↔ 𝑎 = ( ( 𝑥 -s 1s ) +s 1s ) ) ) |
| 34 |
31 33
|
rexsn |
⊢ ( ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) ↔ 𝑎 = ( ( 𝑥 -s 1s ) +s 1s ) ) |
| 35 |
|
n0sno |
⊢ ( 𝑥 ∈ ℕ0s → 𝑥 ∈ No ) |
| 36 |
|
npcans |
⊢ ( ( 𝑥 ∈ No ∧ 1s ∈ No ) → ( ( 𝑥 -s 1s ) +s 1s ) = 𝑥 ) |
| 37 |
35 22 36
|
sylancl |
⊢ ( 𝑥 ∈ ℕ0s → ( ( 𝑥 -s 1s ) +s 1s ) = 𝑥 ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( ( 𝑥 -s 1s ) +s 1s ) = 𝑥 ) |
| 39 |
38
|
eqeq2d |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( 𝑎 = ( ( 𝑥 -s 1s ) +s 1s ) ↔ 𝑎 = 𝑥 ) ) |
| 40 |
34 39
|
bitrid |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) ↔ 𝑎 = 𝑥 ) ) |
| 41 |
40
|
alrimiv |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ∀ 𝑎 ( ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) ↔ 𝑎 = 𝑥 ) ) |
| 42 |
|
absn |
⊢ ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) } = { 𝑥 } ↔ ∀ 𝑎 ( ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) ↔ 𝑎 = 𝑥 ) ) |
| 43 |
41 42
|
sylibr |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) } = { 𝑥 } ) |
| 44 |
21
|
elexi |
⊢ 0s ∈ V |
| 45 |
|
oveq2 |
⊢ ( 𝑏 = 0s → ( 𝑥 +s 𝑏 ) = ( 𝑥 +s 0s ) ) |
| 46 |
45
|
eqeq2d |
⊢ ( 𝑏 = 0s → ( 𝑎 = ( 𝑥 +s 𝑏 ) ↔ 𝑎 = ( 𝑥 +s 0s ) ) ) |
| 47 |
44 46
|
rexsn |
⊢ ( ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) ↔ 𝑎 = ( 𝑥 +s 0s ) ) |
| 48 |
35
|
addsridd |
⊢ ( 𝑥 ∈ ℕ0s → ( 𝑥 +s 0s ) = 𝑥 ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( 𝑥 +s 0s ) = 𝑥 ) |
| 50 |
49
|
eqeq2d |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( 𝑎 = ( 𝑥 +s 0s ) ↔ 𝑎 = 𝑥 ) ) |
| 51 |
47 50
|
bitrid |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) ↔ 𝑎 = 𝑥 ) ) |
| 52 |
51
|
alrimiv |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ∀ 𝑎 ( ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) ↔ 𝑎 = 𝑥 ) ) |
| 53 |
|
absn |
⊢ ( { 𝑎 ∣ ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) } = { 𝑥 } ↔ ∀ 𝑎 ( ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) ↔ 𝑎 = 𝑥 ) ) |
| 54 |
52 53
|
sylibr |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) } = { 𝑥 } ) |
| 55 |
43 54
|
uneq12d |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) } ) = ( { 𝑥 } ∪ { 𝑥 } ) ) |
| 56 |
|
unidm |
⊢ ( { 𝑥 } ∪ { 𝑥 } ) = { 𝑥 } |
| 57 |
55 56
|
eqtrdi |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) } ) = { 𝑥 } ) |
| 58 |
|
rex0 |
⊢ ¬ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑏 +s 1s ) |
| 59 |
58
|
abf |
⊢ { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑏 +s 1s ) } = ∅ |
| 60 |
|
rex0 |
⊢ ¬ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑥 +s 𝑏 ) |
| 61 |
60
|
abf |
⊢ { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑥 +s 𝑏 ) } = ∅ |
| 62 |
59 61
|
uneq12i |
⊢ ( { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑏 +s 1s ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑥 +s 𝑏 ) } ) = ( ∅ ∪ ∅ ) |
| 63 |
|
un0 |
⊢ ( ∅ ∪ ∅ ) = ∅ |
| 64 |
62 63
|
eqtri |
⊢ ( { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑏 +s 1s ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑥 +s 𝑏 ) } ) = ∅ |
| 65 |
64
|
a1i |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑏 +s 1s ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑥 +s 𝑏 ) } ) = ∅ ) |
| 66 |
57 65
|
oveq12d |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) } ) |s ( { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑏 +s 1s ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑥 +s 𝑏 ) } ) ) = ( { 𝑥 } |s ∅ ) ) |
| 67 |
|
subscl |
⊢ ( ( 𝑥 ∈ No ∧ 1s ∈ No ) → ( 𝑥 -s 1s ) ∈ No ) |
| 68 |
35 22 67
|
sylancl |
⊢ ( 𝑥 ∈ ℕ0s → ( 𝑥 -s 1s ) ∈ No ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( 𝑥 -s 1s ) ∈ No ) |
| 70 |
31
|
snelpw |
⊢ ( ( 𝑥 -s 1s ) ∈ No ↔ { ( 𝑥 -s 1s ) } ∈ 𝒫 No ) |
| 71 |
69 70
|
sylib |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → { ( 𝑥 -s 1s ) } ∈ 𝒫 No ) |
| 72 |
|
nulssgt |
⊢ ( { ( 𝑥 -s 1s ) } ∈ 𝒫 No → { ( 𝑥 -s 1s ) } <<s ∅ ) |
| 73 |
71 72
|
syl |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → { ( 𝑥 -s 1s ) } <<s ∅ ) |
| 74 |
44
|
snelpw |
⊢ ( 0s ∈ No ↔ { 0s } ∈ 𝒫 No ) |
| 75 |
21 74
|
mpbi |
⊢ { 0s } ∈ 𝒫 No |
| 76 |
|
nulssgt |
⊢ ( { 0s } ∈ 𝒫 No → { 0s } <<s ∅ ) |
| 77 |
75 76
|
mp1i |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → { 0s } <<s ∅ ) |
| 78 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) |
| 79 |
|
df-1s |
⊢ 1s = ( { 0s } |s ∅ ) |
| 80 |
79
|
a1i |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → 1s = ( { 0s } |s ∅ ) ) |
| 81 |
73 77 78 80
|
addsunif |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( 𝑥 +s 1s ) = ( ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) } ) |s ( { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑏 +s 1s ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑥 +s 𝑏 ) } ) ) ) |
| 82 |
35
|
adantr |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → 𝑥 ∈ No ) |
| 83 |
|
pncans |
⊢ ( ( 𝑥 ∈ No ∧ 1s ∈ No ) → ( ( 𝑥 +s 1s ) -s 1s ) = 𝑥 ) |
| 84 |
82 22 83
|
sylancl |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( ( 𝑥 +s 1s ) -s 1s ) = 𝑥 ) |
| 85 |
84
|
sneqd |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → { ( ( 𝑥 +s 1s ) -s 1s ) } = { 𝑥 } ) |
| 86 |
85
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( { ( ( 𝑥 +s 1s ) -s 1s ) } |s ∅ ) = ( { 𝑥 } |s ∅ ) ) |
| 87 |
66 81 86
|
3eqtr4d |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( 𝑥 +s 1s ) = ( { ( ( 𝑥 +s 1s ) -s 1s ) } |s ∅ ) ) |
| 88 |
87
|
ex |
⊢ ( 𝑥 ∈ ℕ0s → ( 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) → ( 𝑥 +s 1s ) = ( { ( ( 𝑥 +s 1s ) -s 1s ) } |s ∅ ) ) ) |
| 89 |
5 10 15 20 30 88
|
n0sind |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 = ( { ( 𝐴 -s 1s ) } |s ∅ ) ) |