Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝑦 = 0s → 𝑦 = 0s ) |
2 |
|
oveq1 |
⊢ ( 𝑦 = 0s → ( 𝑦 -s 1s ) = ( 0s -s 1s ) ) |
3 |
2
|
sneqd |
⊢ ( 𝑦 = 0s → { ( 𝑦 -s 1s ) } = { ( 0s -s 1s ) } ) |
4 |
3
|
oveq1d |
⊢ ( 𝑦 = 0s → ( { ( 𝑦 -s 1s ) } |s ∅ ) = ( { ( 0s -s 1s ) } |s ∅ ) ) |
5 |
1 4
|
eqeq12d |
⊢ ( 𝑦 = 0s → ( 𝑦 = ( { ( 𝑦 -s 1s ) } |s ∅ ) ↔ 0s = ( { ( 0s -s 1s ) } |s ∅ ) ) ) |
6 |
|
id |
⊢ ( 𝑦 = 𝑥 → 𝑦 = 𝑥 ) |
7 |
|
oveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 -s 1s ) = ( 𝑥 -s 1s ) ) |
8 |
7
|
sneqd |
⊢ ( 𝑦 = 𝑥 → { ( 𝑦 -s 1s ) } = { ( 𝑥 -s 1s ) } ) |
9 |
8
|
oveq1d |
⊢ ( 𝑦 = 𝑥 → ( { ( 𝑦 -s 1s ) } |s ∅ ) = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) |
10 |
6 9
|
eqeq12d |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = ( { ( 𝑦 -s 1s ) } |s ∅ ) ↔ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) ) |
11 |
|
id |
⊢ ( 𝑦 = ( 𝑥 +s 1s ) → 𝑦 = ( 𝑥 +s 1s ) ) |
12 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑥 +s 1s ) → ( 𝑦 -s 1s ) = ( ( 𝑥 +s 1s ) -s 1s ) ) |
13 |
12
|
sneqd |
⊢ ( 𝑦 = ( 𝑥 +s 1s ) → { ( 𝑦 -s 1s ) } = { ( ( 𝑥 +s 1s ) -s 1s ) } ) |
14 |
13
|
oveq1d |
⊢ ( 𝑦 = ( 𝑥 +s 1s ) → ( { ( 𝑦 -s 1s ) } |s ∅ ) = ( { ( ( 𝑥 +s 1s ) -s 1s ) } |s ∅ ) ) |
15 |
11 14
|
eqeq12d |
⊢ ( 𝑦 = ( 𝑥 +s 1s ) → ( 𝑦 = ( { ( 𝑦 -s 1s ) } |s ∅ ) ↔ ( 𝑥 +s 1s ) = ( { ( ( 𝑥 +s 1s ) -s 1s ) } |s ∅ ) ) ) |
16 |
|
id |
⊢ ( 𝑦 = 𝐴 → 𝑦 = 𝐴 ) |
17 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 -s 1s ) = ( 𝐴 -s 1s ) ) |
18 |
17
|
sneqd |
⊢ ( 𝑦 = 𝐴 → { ( 𝑦 -s 1s ) } = { ( 𝐴 -s 1s ) } ) |
19 |
18
|
oveq1d |
⊢ ( 𝑦 = 𝐴 → ( { ( 𝑦 -s 1s ) } |s ∅ ) = ( { ( 𝐴 -s 1s ) } |s ∅ ) ) |
20 |
16 19
|
eqeq12d |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 = ( { ( 𝑦 -s 1s ) } |s ∅ ) ↔ 𝐴 = ( { ( 𝐴 -s 1s ) } |s ∅ ) ) ) |
21 |
|
0sno |
⊢ 0s ∈ No |
22 |
|
1sno |
⊢ 1s ∈ No |
23 |
|
subscl |
⊢ ( ( 0s ∈ No ∧ 1s ∈ No ) → ( 0s -s 1s ) ∈ No ) |
24 |
21 22 23
|
mp2an |
⊢ ( 0s -s 1s ) ∈ No |
25 |
24
|
a1i |
⊢ ( ⊤ → ( 0s -s 1s ) ∈ No ) |
26 |
21
|
a1i |
⊢ ( ⊤ → 0s ∈ No ) |
27 |
|
0slt1s |
⊢ 0s <s 1s |
28 |
|
addslid |
⊢ ( 1s ∈ No → ( 0s +s 1s ) = 1s ) |
29 |
22 28
|
ax-mp |
⊢ ( 0s +s 1s ) = 1s |
30 |
27 29
|
breqtrri |
⊢ 0s <s ( 0s +s 1s ) |
31 |
22
|
a1i |
⊢ ( ⊤ → 1s ∈ No ) |
32 |
26 31 26
|
sltsubaddd |
⊢ ( ⊤ → ( ( 0s -s 1s ) <s 0s ↔ 0s <s ( 0s +s 1s ) ) ) |
33 |
30 32
|
mpbiri |
⊢ ( ⊤ → ( 0s -s 1s ) <s 0s ) |
34 |
25 26 33
|
ssltsn |
⊢ ( ⊤ → { ( 0s -s 1s ) } <<s { 0s } ) |
35 |
21
|
elexi |
⊢ 0s ∈ V |
36 |
35
|
snelpw |
⊢ ( 0s ∈ No ↔ { 0s } ∈ 𝒫 No ) |
37 |
21 36
|
mpbi |
⊢ { 0s } ∈ 𝒫 No |
38 |
|
nulssgt |
⊢ ( { 0s } ∈ 𝒫 No → { 0s } <<s ∅ ) |
39 |
37 38
|
ax-mp |
⊢ { 0s } <<s ∅ |
40 |
39
|
a1i |
⊢ ( ⊤ → { 0s } <<s ∅ ) |
41 |
34 40
|
cuteq0 |
⊢ ( ⊤ → ( { ( 0s -s 1s ) } |s ∅ ) = 0s ) |
42 |
41
|
mptru |
⊢ ( { ( 0s -s 1s ) } |s ∅ ) = 0s |
43 |
42
|
eqcomi |
⊢ 0s = ( { ( 0s -s 1s ) } |s ∅ ) |
44 |
|
ovex |
⊢ ( 𝑥 -s 1s ) ∈ V |
45 |
|
oveq1 |
⊢ ( 𝑏 = ( 𝑥 -s 1s ) → ( 𝑏 +s 1s ) = ( ( 𝑥 -s 1s ) +s 1s ) ) |
46 |
45
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑥 -s 1s ) → ( 𝑎 = ( 𝑏 +s 1s ) ↔ 𝑎 = ( ( 𝑥 -s 1s ) +s 1s ) ) ) |
47 |
44 46
|
rexsn |
⊢ ( ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) ↔ 𝑎 = ( ( 𝑥 -s 1s ) +s 1s ) ) |
48 |
|
n0sno |
⊢ ( 𝑥 ∈ ℕ0s → 𝑥 ∈ No ) |
49 |
|
npcans |
⊢ ( ( 𝑥 ∈ No ∧ 1s ∈ No ) → ( ( 𝑥 -s 1s ) +s 1s ) = 𝑥 ) |
50 |
48 22 49
|
sylancl |
⊢ ( 𝑥 ∈ ℕ0s → ( ( 𝑥 -s 1s ) +s 1s ) = 𝑥 ) |
51 |
50
|
adantr |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( ( 𝑥 -s 1s ) +s 1s ) = 𝑥 ) |
52 |
51
|
eqeq2d |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( 𝑎 = ( ( 𝑥 -s 1s ) +s 1s ) ↔ 𝑎 = 𝑥 ) ) |
53 |
47 52
|
bitrid |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) ↔ 𝑎 = 𝑥 ) ) |
54 |
53
|
alrimiv |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ∀ 𝑎 ( ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) ↔ 𝑎 = 𝑥 ) ) |
55 |
|
absn |
⊢ ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) } = { 𝑥 } ↔ ∀ 𝑎 ( ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) ↔ 𝑎 = 𝑥 ) ) |
56 |
54 55
|
sylibr |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) } = { 𝑥 } ) |
57 |
|
oveq2 |
⊢ ( 𝑏 = 0s → ( 𝑥 +s 𝑏 ) = ( 𝑥 +s 0s ) ) |
58 |
57
|
eqeq2d |
⊢ ( 𝑏 = 0s → ( 𝑎 = ( 𝑥 +s 𝑏 ) ↔ 𝑎 = ( 𝑥 +s 0s ) ) ) |
59 |
35 58
|
rexsn |
⊢ ( ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) ↔ 𝑎 = ( 𝑥 +s 0s ) ) |
60 |
48
|
addsridd |
⊢ ( 𝑥 ∈ ℕ0s → ( 𝑥 +s 0s ) = 𝑥 ) |
61 |
60
|
adantr |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( 𝑥 +s 0s ) = 𝑥 ) |
62 |
61
|
eqeq2d |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( 𝑎 = ( 𝑥 +s 0s ) ↔ 𝑎 = 𝑥 ) ) |
63 |
59 62
|
bitrid |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) ↔ 𝑎 = 𝑥 ) ) |
64 |
63
|
alrimiv |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ∀ 𝑎 ( ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) ↔ 𝑎 = 𝑥 ) ) |
65 |
|
absn |
⊢ ( { 𝑎 ∣ ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) } = { 𝑥 } ↔ ∀ 𝑎 ( ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) ↔ 𝑎 = 𝑥 ) ) |
66 |
64 65
|
sylibr |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) } = { 𝑥 } ) |
67 |
56 66
|
uneq12d |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) } ) = ( { 𝑥 } ∪ { 𝑥 } ) ) |
68 |
|
unidm |
⊢ ( { 𝑥 } ∪ { 𝑥 } ) = { 𝑥 } |
69 |
67 68
|
eqtrdi |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) } ) = { 𝑥 } ) |
70 |
|
rex0 |
⊢ ¬ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑏 +s 1s ) |
71 |
70
|
abf |
⊢ { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑏 +s 1s ) } = ∅ |
72 |
|
rex0 |
⊢ ¬ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑥 +s 𝑏 ) |
73 |
72
|
abf |
⊢ { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑥 +s 𝑏 ) } = ∅ |
74 |
71 73
|
uneq12i |
⊢ ( { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑏 +s 1s ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑥 +s 𝑏 ) } ) = ( ∅ ∪ ∅ ) |
75 |
|
un0 |
⊢ ( ∅ ∪ ∅ ) = ∅ |
76 |
74 75
|
eqtri |
⊢ ( { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑏 +s 1s ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑥 +s 𝑏 ) } ) = ∅ |
77 |
76
|
a1i |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑏 +s 1s ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑥 +s 𝑏 ) } ) = ∅ ) |
78 |
69 77
|
oveq12d |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) } ) |s ( { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑏 +s 1s ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑥 +s 𝑏 ) } ) ) = ( { 𝑥 } |s ∅ ) ) |
79 |
|
subscl |
⊢ ( ( 𝑥 ∈ No ∧ 1s ∈ No ) → ( 𝑥 -s 1s ) ∈ No ) |
80 |
48 22 79
|
sylancl |
⊢ ( 𝑥 ∈ ℕ0s → ( 𝑥 -s 1s ) ∈ No ) |
81 |
80
|
adantr |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( 𝑥 -s 1s ) ∈ No ) |
82 |
44
|
snelpw |
⊢ ( ( 𝑥 -s 1s ) ∈ No ↔ { ( 𝑥 -s 1s ) } ∈ 𝒫 No ) |
83 |
81 82
|
sylib |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → { ( 𝑥 -s 1s ) } ∈ 𝒫 No ) |
84 |
|
nulssgt |
⊢ ( { ( 𝑥 -s 1s ) } ∈ 𝒫 No → { ( 𝑥 -s 1s ) } <<s ∅ ) |
85 |
83 84
|
syl |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → { ( 𝑥 -s 1s ) } <<s ∅ ) |
86 |
39
|
a1i |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → { 0s } <<s ∅ ) |
87 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) |
88 |
|
df-1s |
⊢ 1s = ( { 0s } |s ∅ ) |
89 |
88
|
a1i |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → 1s = ( { 0s } |s ∅ ) ) |
90 |
85 86 87 89
|
addsunif |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( 𝑥 +s 1s ) = ( ( { 𝑎 ∣ ∃ 𝑏 ∈ { ( 𝑥 -s 1s ) } 𝑎 = ( 𝑏 +s 1s ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ { 0s } 𝑎 = ( 𝑥 +s 𝑏 ) } ) |s ( { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑏 +s 1s ) } ∪ { 𝑎 ∣ ∃ 𝑏 ∈ ∅ 𝑎 = ( 𝑥 +s 𝑏 ) } ) ) ) |
91 |
48
|
adantr |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → 𝑥 ∈ No ) |
92 |
|
pncans |
⊢ ( ( 𝑥 ∈ No ∧ 1s ∈ No ) → ( ( 𝑥 +s 1s ) -s 1s ) = 𝑥 ) |
93 |
91 22 92
|
sylancl |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( ( 𝑥 +s 1s ) -s 1s ) = 𝑥 ) |
94 |
93
|
sneqd |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → { ( ( 𝑥 +s 1s ) -s 1s ) } = { 𝑥 } ) |
95 |
94
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( { ( ( 𝑥 +s 1s ) -s 1s ) } |s ∅ ) = ( { 𝑥 } |s ∅ ) ) |
96 |
78 90 95
|
3eqtr4d |
⊢ ( ( 𝑥 ∈ ℕ0s ∧ 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) ) → ( 𝑥 +s 1s ) = ( { ( ( 𝑥 +s 1s ) -s 1s ) } |s ∅ ) ) |
97 |
96
|
ex |
⊢ ( 𝑥 ∈ ℕ0s → ( 𝑥 = ( { ( 𝑥 -s 1s ) } |s ∅ ) → ( 𝑥 +s 1s ) = ( { ( ( 𝑥 +s 1s ) -s 1s ) } |s ∅ ) ) ) |
98 |
5 10 15 20 43 97
|
n0sind |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 = ( { ( 𝐴 -s 1s ) } |s ∅ ) ) |