Description: A surreal is greater than itself minus one. (Contributed by Scott Fenton, 20-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sltm1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| Assertion | sltm1d | ⊢ ( 𝜑 → ( 𝐴 -s 1s ) <s 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltm1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | 1 | sltp1d | ⊢ ( 𝜑 → 𝐴 <s ( 𝐴 +s 1s ) ) |
| 3 | 1sno | ⊢ 1s ∈ No | |
| 4 | 3 | a1i | ⊢ ( 𝜑 → 1s ∈ No ) |
| 5 | 1 4 1 | sltsubaddd | ⊢ ( 𝜑 → ( ( 𝐴 -s 1s ) <s 𝐴 ↔ 𝐴 <s ( 𝐴 +s 1s ) ) ) |
| 6 | 2 5 | mpbird | ⊢ ( 𝜑 → ( 𝐴 -s 1s ) <s 𝐴 ) |