Metamath Proof Explorer


Theorem sltm1d

Description: A surreal is greater than itself minus one. (Contributed by Scott Fenton, 20-Aug-2025)

Ref Expression
Hypothesis sltm1d.1 ( 𝜑𝐴 No )
Assertion sltm1d ( 𝜑 → ( 𝐴 -s 1s ) <s 𝐴 )

Proof

Step Hyp Ref Expression
1 sltm1d.1 ( 𝜑𝐴 No )
2 1 sltp1d ( 𝜑𝐴 <s ( 𝐴 +s 1s ) )
3 1sno 1s No
4 3 a1i ( 𝜑 → 1s No )
5 1 4 1 sltsubaddd ( 𝜑 → ( ( 𝐴 -s 1s ) <s 𝐴𝐴 <s ( 𝐴 +s 1s ) ) )
6 2 5 mpbird ( 𝜑 → ( 𝐴 -s 1s ) <s 𝐴 )