Description: A surreal is greater than itself minus one. (Contributed by Scott Fenton, 20-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sltm1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
Assertion | sltm1d | ⊢ ( 𝜑 → ( 𝐴 -s 1s ) <s 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltm1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
2 | 1 | sltp1d | ⊢ ( 𝜑 → 𝐴 <s ( 𝐴 +s 1s ) ) |
3 | 1sno | ⊢ 1s ∈ No | |
4 | 3 | a1i | ⊢ ( 𝜑 → 1s ∈ No ) |
5 | 1 4 1 | sltsubaddd | ⊢ ( 𝜑 → ( ( 𝐴 -s 1s ) <s 𝐴 ↔ 𝐴 <s ( 𝐴 +s 1s ) ) ) |
6 | 2 5 | mpbird | ⊢ ( 𝜑 → ( 𝐴 -s 1s ) <s 𝐴 ) |