| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subscand.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
subscand.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
subscand.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 4 |
3 1
|
subsvald |
⊢ ( 𝜑 → ( 𝐶 -s 𝐴 ) = ( 𝐶 +s ( -us ‘ 𝐴 ) ) ) |
| 5 |
3 2
|
subsvald |
⊢ ( 𝜑 → ( 𝐶 -s 𝐵 ) = ( 𝐶 +s ( -us ‘ 𝐵 ) ) ) |
| 6 |
4 5
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝐶 -s 𝐴 ) = ( 𝐶 -s 𝐵 ) ↔ ( 𝐶 +s ( -us ‘ 𝐴 ) ) = ( 𝐶 +s ( -us ‘ 𝐵 ) ) ) ) |
| 7 |
1
|
negscld |
⊢ ( 𝜑 → ( -us ‘ 𝐴 ) ∈ No ) |
| 8 |
2
|
negscld |
⊢ ( 𝜑 → ( -us ‘ 𝐵 ) ∈ No ) |
| 9 |
7 8 3
|
addscan1d |
⊢ ( 𝜑 → ( ( 𝐶 +s ( -us ‘ 𝐴 ) ) = ( 𝐶 +s ( -us ‘ 𝐵 ) ) ↔ ( -us ‘ 𝐴 ) = ( -us ‘ 𝐵 ) ) ) |
| 10 |
|
negs11 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( -us ‘ 𝐴 ) = ( -us ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 11 |
1 2 10
|
syl2anc |
⊢ ( 𝜑 → ( ( -us ‘ 𝐴 ) = ( -us ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 12 |
6 9 11
|
3bitrd |
⊢ ( 𝜑 → ( ( 𝐶 -s 𝐴 ) = ( 𝐶 -s 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |