| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subscand.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
subscand.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
subscand.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 4 |
1 3
|
subsvald |
⊢ ( 𝜑 → ( 𝐴 -s 𝐶 ) = ( 𝐴 +s ( -us ‘ 𝐶 ) ) ) |
| 5 |
2 3
|
subsvald |
⊢ ( 𝜑 → ( 𝐵 -s 𝐶 ) = ( 𝐵 +s ( -us ‘ 𝐶 ) ) ) |
| 6 |
4 5
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐶 ) = ( 𝐵 -s 𝐶 ) ↔ ( 𝐴 +s ( -us ‘ 𝐶 ) ) = ( 𝐵 +s ( -us ‘ 𝐶 ) ) ) ) |
| 7 |
3
|
negscld |
⊢ ( 𝜑 → ( -us ‘ 𝐶 ) ∈ No ) |
| 8 |
1 2 7
|
addscan2d |
⊢ ( 𝜑 → ( ( 𝐴 +s ( -us ‘ 𝐶 ) ) = ( 𝐵 +s ( -us ‘ 𝐶 ) ) ↔ 𝐴 = 𝐵 ) ) |
| 9 |
6 8
|
bitrd |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐶 ) = ( 𝐵 -s 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |