Metamath Proof Explorer


Theorem subscan2d

Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Hypotheses subscand.1
|- ( ph -> A e. No )
subscand.2
|- ( ph -> B e. No )
subscand.3
|- ( ph -> C e. No )
Assertion subscan2d
|- ( ph -> ( ( A -s C ) = ( B -s C ) <-> A = B ) )

Proof

Step Hyp Ref Expression
1 subscand.1
 |-  ( ph -> A e. No )
2 subscand.2
 |-  ( ph -> B e. No )
3 subscand.3
 |-  ( ph -> C e. No )
4 1 3 subsvald
 |-  ( ph -> ( A -s C ) = ( A +s ( -us ` C ) ) )
5 2 3 subsvald
 |-  ( ph -> ( B -s C ) = ( B +s ( -us ` C ) ) )
6 4 5 eqeq12d
 |-  ( ph -> ( ( A -s C ) = ( B -s C ) <-> ( A +s ( -us ` C ) ) = ( B +s ( -us ` C ) ) ) )
7 3 negscld
 |-  ( ph -> ( -us ` C ) e. No )
8 1 2 7 addscan2d
 |-  ( ph -> ( ( A +s ( -us ` C ) ) = ( B +s ( -us ` C ) ) <-> A = B ) )
9 6 8 bitrd
 |-  ( ph -> ( ( A -s C ) = ( B -s C ) <-> A = B ) )