| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subscand.1 |
|- ( ph -> A e. No ) |
| 2 |
|
subscand.2 |
|- ( ph -> B e. No ) |
| 3 |
|
subscand.3 |
|- ( ph -> C e. No ) |
| 4 |
1 3
|
subsvald |
|- ( ph -> ( A -s C ) = ( A +s ( -us ` C ) ) ) |
| 5 |
2 3
|
subsvald |
|- ( ph -> ( B -s C ) = ( B +s ( -us ` C ) ) ) |
| 6 |
4 5
|
eqeq12d |
|- ( ph -> ( ( A -s C ) = ( B -s C ) <-> ( A +s ( -us ` C ) ) = ( B +s ( -us ` C ) ) ) ) |
| 7 |
3
|
negscld |
|- ( ph -> ( -us ` C ) e. No ) |
| 8 |
1 2 7
|
addscan2d |
|- ( ph -> ( ( A +s ( -us ` C ) ) = ( B +s ( -us ` C ) ) <-> A = B ) ) |
| 9 |
6 8
|
bitrd |
|- ( ph -> ( ( A -s C ) = ( B -s C ) <-> A = B ) ) |