Metamath Proof Explorer


Theorem subsvald

Description: The value of surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses subsvald.1
|- ( ph -> A e. No )
subsvald.2
|- ( ph -> B e. No )
Assertion subsvald
|- ( ph -> ( A -s B ) = ( A +s ( -us ` B ) ) )

Proof

Step Hyp Ref Expression
1 subsvald.1
 |-  ( ph -> A e. No )
2 subsvald.2
 |-  ( ph -> B e. No )
3 subsval
 |-  ( ( A e. No /\ B e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A -s B ) = ( A +s ( -us ` B ) ) )