Description: The value of surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subsvald.1 | |- ( ph -> A e. No ) |
|
subsvald.2 | |- ( ph -> B e. No ) |
||
Assertion | subsvald | |- ( ph -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subsvald.1 | |- ( ph -> A e. No ) |
|
2 | subsvald.2 | |- ( ph -> B e. No ) |
|
3 | subsval | |- ( ( A e. No /\ B e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |