Metamath Proof Explorer


Theorem subsvald

Description: The value of surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses subsvald.1 φANo
subsvald.2 φBNo
Assertion subsvald Could not format assertion : No typesetting found for |- ( ph -> ( A -s B ) = ( A +s ( -us ` B ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 subsvald.1 φANo
2 subsvald.2 φBNo
3 subsval Could not format ( ( A e. No /\ B e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) ) with typecode |-
4 1 2 3 syl2anc Could not format ( ph -> ( A -s B ) = ( A +s ( -us ` B ) ) ) : No typesetting found for |- ( ph -> ( A -s B ) = ( A +s ( -us ` B ) ) ) with typecode |-