Database
SURREAL NUMBERS
Surreal arithmetic
Negation and Subtraction
subscan2d
Next ⟩
subseq0d
Metamath Proof Explorer
Ascii
Unicode
Theorem
subscan2d
Description:
Cancellation law for surreal subtraction.
(Contributed by
Scott Fenton
, 7-Nov-2025)
Ref
Expression
Hypotheses
subscand.1
⊢
φ
→
A
∈
No
subscand.2
⊢
φ
→
B
∈
No
subscand.3
⊢
φ
→
C
∈
No
Assertion
subscan2d
⊢
φ
→
A
-
s
C
=
B
-
s
C
↔
A
=
B
Proof
Step
Hyp
Ref
Expression
1
subscand.1
⊢
φ
→
A
∈
No
2
subscand.2
⊢
φ
→
B
∈
No
3
subscand.3
⊢
φ
→
C
∈
No
4
1
3
subsvald
⊢
φ
→
A
-
s
C
=
A
+
s
+
s
⁡
C
5
2
3
subsvald
⊢
φ
→
B
-
s
C
=
B
+
s
+
s
⁡
C
6
4
5
eqeq12d
⊢
φ
→
A
-
s
C
=
B
-
s
C
↔
A
+
s
+
s
⁡
C
=
B
+
s
+
s
⁡
C
7
3
negscld
⊢
φ
→
+
s
⁡
C
∈
No
8
1
2
7
addscan2d
⊢
φ
→
A
+
s
+
s
⁡
C
=
B
+
s
+
s
⁡
C
↔
A
=
B
9
6
8
bitrd
⊢
φ
→
A
-
s
C
=
B
-
s
C
↔
A
=
B