Description: The difference between two surreals is zero iff they are equal. (Contributed by Scott Fenton, 7-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subseq0d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| subseq0d.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
| Assertion | subseq0d | ⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) = 0s ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subseq0d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | subseq0d.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
| 3 | subsid | ⊢ ( 𝐵 ∈ No → ( 𝐵 -s 𝐵 ) = 0s ) | |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → ( 𝐵 -s 𝐵 ) = 0s ) |
| 5 | 4 | eqeq2d | ⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) = ( 𝐵 -s 𝐵 ) ↔ ( 𝐴 -s 𝐵 ) = 0s ) ) |
| 6 | 1 2 2 | subscan2d | ⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) = ( 𝐵 -s 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 7 | 5 6 | bitr3d | ⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) = 0s ↔ 𝐴 = 𝐵 ) ) |