Metamath Proof Explorer


Theorem subseq0d

Description: The difference between two surreals is zero iff they are equal. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Hypotheses subseq0d.1 ( 𝜑𝐴 No )
subseq0d.2 ( 𝜑𝐵 No )
Assertion subseq0d ( 𝜑 → ( ( 𝐴 -s 𝐵 ) = 0s𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 subseq0d.1 ( 𝜑𝐴 No )
2 subseq0d.2 ( 𝜑𝐵 No )
3 subsid ( 𝐵 No → ( 𝐵 -s 𝐵 ) = 0s )
4 2 3 syl ( 𝜑 → ( 𝐵 -s 𝐵 ) = 0s )
5 4 eqeq2d ( 𝜑 → ( ( 𝐴 -s 𝐵 ) = ( 𝐵 -s 𝐵 ) ↔ ( 𝐴 -s 𝐵 ) = 0s ) )
6 1 2 2 subscan2d ( 𝜑 → ( ( 𝐴 -s 𝐵 ) = ( 𝐵 -s 𝐵 ) ↔ 𝐴 = 𝐵 ) )
7 5 6 bitr3d ( 𝜑 → ( ( 𝐴 -s 𝐵 ) = 0s𝐴 = 𝐵 ) )