Metamath Proof Explorer


Theorem subscan1d

Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Hypotheses subscand.1 φ A No
subscand.2 φ B No
subscand.3 φ C No
Assertion subscan1d φ C - s A = C - s B A = B

Proof

Step Hyp Ref Expression
1 subscand.1 φ A No
2 subscand.2 φ B No
3 subscand.3 φ C No
4 3 1 subsvald φ C - s A = C + s + s A
5 3 2 subsvald φ C - s B = C + s + s B
6 4 5 eqeq12d φ C - s A = C - s B C + s + s A = C + s + s B
7 1 negscld φ + s A No
8 2 negscld φ + s B No
9 7 8 3 addscan1d φ C + s + s A = C + s + s B + s A = + s B
10 negs11 A No B No + s A = + s B A = B
11 1 2 10 syl2anc φ + s A = + s B A = B
12 6 9 11 3bitrd φ C - s A = C - s B A = B