Database
SURREAL NUMBERS
Surreal arithmetic
Negation and Subtraction
subscan1d
Next ⟩
subscan2d
Metamath Proof Explorer
Ascii
Unicode
Theorem
subscan1d
Description:
Cancellation law for surreal subtraction.
(Contributed by
Scott Fenton
, 7-Nov-2025)
Ref
Expression
Hypotheses
subscand.1
⊢
φ
→
A
∈
No
subscand.2
⊢
φ
→
B
∈
No
subscand.3
⊢
φ
→
C
∈
No
Assertion
subscan1d
⊢
φ
→
C
-
s
A
=
C
-
s
B
↔
A
=
B
Proof
Step
Hyp
Ref
Expression
1
subscand.1
⊢
φ
→
A
∈
No
2
subscand.2
⊢
φ
→
B
∈
No
3
subscand.3
⊢
φ
→
C
∈
No
4
3
1
subsvald
⊢
φ
→
C
-
s
A
=
C
+
s
+
s
⁡
A
5
3
2
subsvald
⊢
φ
→
C
-
s
B
=
C
+
s
+
s
⁡
B
6
4
5
eqeq12d
⊢
φ
→
C
-
s
A
=
C
-
s
B
↔
C
+
s
+
s
⁡
A
=
C
+
s
+
s
⁡
B
7
1
negscld
⊢
φ
→
+
s
⁡
A
∈
No
8
2
negscld
⊢
φ
→
+
s
⁡
B
∈
No
9
7
8
3
addscan1d
⊢
φ
→
C
+
s
+
s
⁡
A
=
C
+
s
+
s
⁡
B
↔
+
s
⁡
A
=
+
s
⁡
B
10
negs11
⊢
A
∈
No
∧
B
∈
No
→
+
s
⁡
A
=
+
s
⁡
B
↔
A
=
B
11
1
2
10
syl2anc
⊢
φ
→
+
s
⁡
A
=
+
s
⁡
B
↔
A
=
B
12
6
9
11
3bitrd
⊢
φ
→
C
-
s
A
=
C
-
s
B
↔
A
=
B