| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subscand.1 |
|- ( ph -> A e. No ) |
| 2 |
|
subscand.2 |
|- ( ph -> B e. No ) |
| 3 |
|
subscand.3 |
|- ( ph -> C e. No ) |
| 4 |
3 1
|
subsvald |
|- ( ph -> ( C -s A ) = ( C +s ( -us ` A ) ) ) |
| 5 |
3 2
|
subsvald |
|- ( ph -> ( C -s B ) = ( C +s ( -us ` B ) ) ) |
| 6 |
4 5
|
eqeq12d |
|- ( ph -> ( ( C -s A ) = ( C -s B ) <-> ( C +s ( -us ` A ) ) = ( C +s ( -us ` B ) ) ) ) |
| 7 |
1
|
negscld |
|- ( ph -> ( -us ` A ) e. No ) |
| 8 |
2
|
negscld |
|- ( ph -> ( -us ` B ) e. No ) |
| 9 |
7 8 3
|
addscan1d |
|- ( ph -> ( ( C +s ( -us ` A ) ) = ( C +s ( -us ` B ) ) <-> ( -us ` A ) = ( -us ` B ) ) ) |
| 10 |
|
negs11 |
|- ( ( A e. No /\ B e. No ) -> ( ( -us ` A ) = ( -us ` B ) <-> A = B ) ) |
| 11 |
1 2 10
|
syl2anc |
|- ( ph -> ( ( -us ` A ) = ( -us ` B ) <-> A = B ) ) |
| 12 |
6 9 11
|
3bitrd |
|- ( ph -> ( ( C -s A ) = ( C -s B ) <-> A = B ) ) |