| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( ( -us ` A ) = ( -us ` B ) -> ( -us ` ( -us ` A ) ) = ( -us ` ( -us ` B ) ) ) | 
						
							| 2 |  | negnegs |  |-  ( A e. No -> ( -us ` ( -us ` A ) ) = A ) | 
						
							| 3 |  | negnegs |  |-  ( B e. No -> ( -us ` ( -us ` B ) ) = B ) | 
						
							| 4 | 2 3 | eqeqan12d |  |-  ( ( A e. No /\ B e. No ) -> ( ( -us ` ( -us ` A ) ) = ( -us ` ( -us ` B ) ) <-> A = B ) ) | 
						
							| 5 | 1 4 | imbitrid |  |-  ( ( A e. No /\ B e. No ) -> ( ( -us ` A ) = ( -us ` B ) -> A = B ) ) | 
						
							| 6 |  | fveq2 |  |-  ( A = B -> ( -us ` A ) = ( -us ` B ) ) | 
						
							| 7 | 5 6 | impbid1 |  |-  ( ( A e. No /\ B e. No ) -> ( ( -us ` A ) = ( -us ` B ) <-> A = B ) ) |