Metamath Proof Explorer


Theorem negsdi

Description: Distribution of surreal negative over addition. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Assertion negsdi
|- ( ( A e. No /\ B e. No ) -> ( -us ` ( A +s B ) ) = ( ( -us ` A ) +s ( -us ` B ) ) )

Proof

Step Hyp Ref Expression
1 addscl
 |-  ( ( A e. No /\ B e. No ) -> ( A +s B ) e. No )
2 1 negsidd
 |-  ( ( A e. No /\ B e. No ) -> ( ( A +s B ) +s ( -us ` ( A +s B ) ) ) = 0s )
3 negsid
 |-  ( A e. No -> ( A +s ( -us ` A ) ) = 0s )
4 negsid
 |-  ( B e. No -> ( B +s ( -us ` B ) ) = 0s )
5 3 4 oveqan12d
 |-  ( ( A e. No /\ B e. No ) -> ( ( A +s ( -us ` A ) ) +s ( B +s ( -us ` B ) ) ) = ( 0s +s 0s ) )
6 0sno
 |-  0s e. No
7 addslid
 |-  ( 0s e. No -> ( 0s +s 0s ) = 0s )
8 6 7 ax-mp
 |-  ( 0s +s 0s ) = 0s
9 5 8 eqtr2di
 |-  ( ( A e. No /\ B e. No ) -> 0s = ( ( A +s ( -us ` A ) ) +s ( B +s ( -us ` B ) ) ) )
10 simpl
 |-  ( ( A e. No /\ B e. No ) -> A e. No )
11 10 negscld
 |-  ( ( A e. No /\ B e. No ) -> ( -us ` A ) e. No )
12 simpr
 |-  ( ( A e. No /\ B e. No ) -> B e. No )
13 12 negscld
 |-  ( ( A e. No /\ B e. No ) -> ( -us ` B ) e. No )
14 10 11 12 13 adds4d
 |-  ( ( A e. No /\ B e. No ) -> ( ( A +s ( -us ` A ) ) +s ( B +s ( -us ` B ) ) ) = ( ( A +s B ) +s ( ( -us ` A ) +s ( -us ` B ) ) ) )
15 2 9 14 3eqtrd
 |-  ( ( A e. No /\ B e. No ) -> ( ( A +s B ) +s ( -us ` ( A +s B ) ) ) = ( ( A +s B ) +s ( ( -us ` A ) +s ( -us ` B ) ) ) )
16 1 negscld
 |-  ( ( A e. No /\ B e. No ) -> ( -us ` ( A +s B ) ) e. No )
17 negscl
 |-  ( A e. No -> ( -us ` A ) e. No )
18 negscl
 |-  ( B e. No -> ( -us ` B ) e. No )
19 addscl
 |-  ( ( ( -us ` A ) e. No /\ ( -us ` B ) e. No ) -> ( ( -us ` A ) +s ( -us ` B ) ) e. No )
20 17 18 19 syl2an
 |-  ( ( A e. No /\ B e. No ) -> ( ( -us ` A ) +s ( -us ` B ) ) e. No )
21 16 20 1 addscan1d
 |-  ( ( A e. No /\ B e. No ) -> ( ( ( A +s B ) +s ( -us ` ( A +s B ) ) ) = ( ( A +s B ) +s ( ( -us ` A ) +s ( -us ` B ) ) ) <-> ( -us ` ( A +s B ) ) = ( ( -us ` A ) +s ( -us ` B ) ) ) )
22 15 21 mpbid
 |-  ( ( A e. No /\ B e. No ) -> ( -us ` ( A +s B ) ) = ( ( -us ` A ) +s ( -us ` B ) ) )