| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addscl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s 𝐵 ) ∈ No ) |
| 2 |
1
|
negsidd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 +s 𝐵 ) +s ( -us ‘ ( 𝐴 +s 𝐵 ) ) ) = 0s ) |
| 3 |
|
negsid |
⊢ ( 𝐴 ∈ No → ( 𝐴 +s ( -us ‘ 𝐴 ) ) = 0s ) |
| 4 |
|
negsid |
⊢ ( 𝐵 ∈ No → ( 𝐵 +s ( -us ‘ 𝐵 ) ) = 0s ) |
| 5 |
3 4
|
oveqan12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 +s ( -us ‘ 𝐴 ) ) +s ( 𝐵 +s ( -us ‘ 𝐵 ) ) ) = ( 0s +s 0s ) ) |
| 6 |
|
0sno |
⊢ 0s ∈ No |
| 7 |
|
addslid |
⊢ ( 0s ∈ No → ( 0s +s 0s ) = 0s ) |
| 8 |
6 7
|
ax-mp |
⊢ ( 0s +s 0s ) = 0s |
| 9 |
5 8
|
eqtr2di |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 0s = ( ( 𝐴 +s ( -us ‘ 𝐴 ) ) +s ( 𝐵 +s ( -us ‘ 𝐵 ) ) ) ) |
| 10 |
|
simpl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐴 ∈ No ) |
| 11 |
10
|
negscld |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘ 𝐴 ) ∈ No ) |
| 12 |
|
simpr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐵 ∈ No ) |
| 13 |
12
|
negscld |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘ 𝐵 ) ∈ No ) |
| 14 |
10 11 12 13
|
adds4d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 +s ( -us ‘ 𝐴 ) ) +s ( 𝐵 +s ( -us ‘ 𝐵 ) ) ) = ( ( 𝐴 +s 𝐵 ) +s ( ( -us ‘ 𝐴 ) +s ( -us ‘ 𝐵 ) ) ) ) |
| 15 |
2 9 14
|
3eqtrd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 +s 𝐵 ) +s ( -us ‘ ( 𝐴 +s 𝐵 ) ) ) = ( ( 𝐴 +s 𝐵 ) +s ( ( -us ‘ 𝐴 ) +s ( -us ‘ 𝐵 ) ) ) ) |
| 16 |
1
|
negscld |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘ ( 𝐴 +s 𝐵 ) ) ∈ No ) |
| 17 |
|
negscl |
⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) ∈ No ) |
| 18 |
|
negscl |
⊢ ( 𝐵 ∈ No → ( -us ‘ 𝐵 ) ∈ No ) |
| 19 |
|
addscl |
⊢ ( ( ( -us ‘ 𝐴 ) ∈ No ∧ ( -us ‘ 𝐵 ) ∈ No ) → ( ( -us ‘ 𝐴 ) +s ( -us ‘ 𝐵 ) ) ∈ No ) |
| 20 |
17 18 19
|
syl2an |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( -us ‘ 𝐴 ) +s ( -us ‘ 𝐵 ) ) ∈ No ) |
| 21 |
16 20 1
|
addscan1d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( ( 𝐴 +s 𝐵 ) +s ( -us ‘ ( 𝐴 +s 𝐵 ) ) ) = ( ( 𝐴 +s 𝐵 ) +s ( ( -us ‘ 𝐴 ) +s ( -us ‘ 𝐵 ) ) ) ↔ ( -us ‘ ( 𝐴 +s 𝐵 ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ 𝐵 ) ) ) ) |
| 22 |
15 21
|
mpbid |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘ ( 𝐴 +s 𝐵 ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ 𝐵 ) ) ) |