Step |
Hyp |
Ref |
Expression |
1 |
|
adds4d.1 |
|- ( ph -> A e. No ) |
2 |
|
adds4d.2 |
|- ( ph -> B e. No ) |
3 |
|
adds4d.3 |
|- ( ph -> C e. No ) |
4 |
|
adds4d.4 |
|- ( ph -> D e. No ) |
5 |
1 2 3
|
adds32d |
|- ( ph -> ( ( A +s B ) +s C ) = ( ( A +s C ) +s B ) ) |
6 |
5
|
oveq1d |
|- ( ph -> ( ( ( A +s B ) +s C ) +s D ) = ( ( ( A +s C ) +s B ) +s D ) ) |
7 |
1 2
|
addscld |
|- ( ph -> ( A +s B ) e. No ) |
8 |
7 3 4
|
addsassd |
|- ( ph -> ( ( ( A +s B ) +s C ) +s D ) = ( ( A +s B ) +s ( C +s D ) ) ) |
9 |
1 3
|
addscld |
|- ( ph -> ( A +s C ) e. No ) |
10 |
9 2 4
|
addsassd |
|- ( ph -> ( ( ( A +s C ) +s B ) +s D ) = ( ( A +s C ) +s ( B +s D ) ) ) |
11 |
6 8 10
|
3eqtr3d |
|- ( ph -> ( ( A +s B ) +s ( C +s D ) ) = ( ( A +s C ) +s ( B +s D ) ) ) |