Metamath Proof Explorer


Theorem adds4d

Description: Rearrangement of four terms in a surreal sum. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses adds4d.1
|- ( ph -> A e. No )
adds4d.2
|- ( ph -> B e. No )
adds4d.3
|- ( ph -> C e. No )
adds4d.4
|- ( ph -> D e. No )
Assertion adds4d
|- ( ph -> ( ( A +s B ) +s ( C +s D ) ) = ( ( A +s C ) +s ( B +s D ) ) )

Proof

Step Hyp Ref Expression
1 adds4d.1
 |-  ( ph -> A e. No )
2 adds4d.2
 |-  ( ph -> B e. No )
3 adds4d.3
 |-  ( ph -> C e. No )
4 adds4d.4
 |-  ( ph -> D e. No )
5 1 2 3 adds32d
 |-  ( ph -> ( ( A +s B ) +s C ) = ( ( A +s C ) +s B ) )
6 5 oveq1d
 |-  ( ph -> ( ( ( A +s B ) +s C ) +s D ) = ( ( ( A +s C ) +s B ) +s D ) )
7 1 2 addscld
 |-  ( ph -> ( A +s B ) e. No )
8 7 3 4 addsassd
 |-  ( ph -> ( ( ( A +s B ) +s C ) +s D ) = ( ( A +s B ) +s ( C +s D ) ) )
9 1 3 addscld
 |-  ( ph -> ( A +s C ) e. No )
10 9 2 4 addsassd
 |-  ( ph -> ( ( ( A +s C ) +s B ) +s D ) = ( ( A +s C ) +s ( B +s D ) ) )
11 6 8 10 3eqtr3d
 |-  ( ph -> ( ( A +s B ) +s ( C +s D ) ) = ( ( A +s C ) +s ( B +s D ) ) )