Description: Rearrangement of four terms in a surreal sum. (Contributed by Scott Fenton, 5-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | adds4d.1 | |- ( ph -> A e. No ) | |
| adds4d.2 | |- ( ph -> B e. No ) | ||
| adds4d.3 | |- ( ph -> C e. No ) | ||
| adds4d.4 | |- ( ph -> D e. No ) | ||
| Assertion | adds42d | |- ( ph -> ( ( A +s B ) +s ( C +s D ) ) = ( ( A +s C ) +s ( D +s B ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | adds4d.1 | |- ( ph -> A e. No ) | |
| 2 | adds4d.2 | |- ( ph -> B e. No ) | |
| 3 | adds4d.3 | |- ( ph -> C e. No ) | |
| 4 | adds4d.4 | |- ( ph -> D e. No ) | |
| 5 | 1 2 3 4 | adds4d | |- ( ph -> ( ( A +s B ) +s ( C +s D ) ) = ( ( A +s C ) +s ( B +s D ) ) ) | 
| 6 | 2 4 | addscomd | |- ( ph -> ( B +s D ) = ( D +s B ) ) | 
| 7 | 6 | oveq2d | |- ( ph -> ( ( A +s C ) +s ( B +s D ) ) = ( ( A +s C ) +s ( D +s B ) ) ) | 
| 8 | 5 7 | eqtrd | |- ( ph -> ( ( A +s B ) +s ( C +s D ) ) = ( ( A +s C ) +s ( D +s B ) ) ) |