Description: Rearrangement of four terms in a surreal sum. (Contributed by Scott Fenton, 5-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | adds4d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| adds4d.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
| adds4d.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | ||
| adds4d.4 | ⊢ ( 𝜑 → 𝐷 ∈ No ) | ||
| Assertion | adds42d | ⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s ( 𝐶 +s 𝐷 ) ) = ( ( 𝐴 +s 𝐶 ) +s ( 𝐷 +s 𝐵 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | adds4d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | adds4d.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
| 3 | adds4d.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | |
| 4 | adds4d.4 | ⊢ ( 𝜑 → 𝐷 ∈ No ) | |
| 5 | 1 2 3 4 | adds4d | ⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s ( 𝐶 +s 𝐷 ) ) = ( ( 𝐴 +s 𝐶 ) +s ( 𝐵 +s 𝐷 ) ) ) | 
| 6 | 2 4 | addscomd | ⊢ ( 𝜑 → ( 𝐵 +s 𝐷 ) = ( 𝐷 +s 𝐵 ) ) | 
| 7 | 6 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐴 +s 𝐶 ) +s ( 𝐵 +s 𝐷 ) ) = ( ( 𝐴 +s 𝐶 ) +s ( 𝐷 +s 𝐵 ) ) ) | 
| 8 | 5 7 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s ( 𝐶 +s 𝐷 ) ) = ( ( 𝐴 +s 𝐶 ) +s ( 𝐷 +s 𝐵 ) ) ) |