| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( (  -us  ‘ 𝐴 )  =  (  -us  ‘ 𝐵 )  →  (  -us  ‘ (  -us  ‘ 𝐴 ) )  =  (  -us  ‘ (  -us  ‘ 𝐵 ) ) ) | 
						
							| 2 |  | negnegs | ⊢ ( 𝐴  ∈   No   →  (  -us  ‘ (  -us  ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 3 |  | negnegs | ⊢ ( 𝐵  ∈   No   →  (  -us  ‘ (  -us  ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 4 | 2 3 | eqeqan12d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( (  -us  ‘ (  -us  ‘ 𝐴 ) )  =  (  -us  ‘ (  -us  ‘ 𝐵 ) )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 5 | 1 4 | imbitrid | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( (  -us  ‘ 𝐴 )  =  (  -us  ‘ 𝐵 )  →  𝐴  =  𝐵 ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝐴  =  𝐵  →  (  -us  ‘ 𝐴 )  =  (  -us  ‘ 𝐵 ) ) | 
						
							| 7 | 5 6 | impbid1 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( (  -us  ‘ 𝐴 )  =  (  -us  ‘ 𝐵 )  ↔  𝐴  =  𝐵 ) ) |