Description: A surreal is greater than itself minus one. (Contributed by Scott Fenton, 20-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sltm1d.1 | |- ( ph -> A e. No ) |
|
Assertion | sltm1d | |- ( ph -> ( A -s 1s ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltm1d.1 | |- ( ph -> A e. No ) |
|
2 | 1 | sltp1d | |- ( ph -> A |
3 | 1sno | |- 1s e. No |
|
4 | 3 | a1i | |- ( ph -> 1s e. No ) |
5 | 1 4 1 | sltsubaddd | |- ( ph -> ( ( A -s 1s ) |
6 | 2 5 | mpbird | |- ( ph -> ( A -s 1s ) |