Metamath Proof Explorer


Theorem sltm1d

Description: A surreal is greater than itself minus one. (Contributed by Scott Fenton, 20-Aug-2025)

Ref Expression
Hypothesis sltm1d.1
|- ( ph -> A e. No )
Assertion sltm1d
|- ( ph -> ( A -s 1s ) 

Proof

Step Hyp Ref Expression
1 sltm1d.1
 |-  ( ph -> A e. No )
2 1 sltp1d
 |-  ( ph -> A 
3 1sno
 |-  1s e. No
4 3 a1i
 |-  ( ph -> 1s e. No )
5 1 4 1 sltsubaddd
 |-  ( ph -> ( ( A -s 1s )  A 
6 2 5 mpbird
 |-  ( ph -> ( A -s 1s )