Description: The simplest number greater than a negative number is zero. (Contributed by Scott Fenton, 4-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cutneg.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| cutneg.2 | ⊢ ( 𝜑 → 𝐴 <s 0s ) | ||
| Assertion | cutneg | ⊢ ( 𝜑 → ( { 𝐴 } |s ∅ ) = 0s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cutneg.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | cutneg.2 | ⊢ ( 𝜑 → 𝐴 <s 0s ) | |
| 3 | 0sno | ⊢ 0s ∈ No | |
| 4 | 3 | a1i | ⊢ ( 𝜑 → 0s ∈ No ) |
| 5 | 1 4 2 | ssltsn | ⊢ ( 𝜑 → { 𝐴 } <<s { 0s } ) |
| 6 | snelpwi | ⊢ ( 0s ∈ No → { 0s } ∈ 𝒫 No ) | |
| 7 | 3 6 | ax-mp | ⊢ { 0s } ∈ 𝒫 No |
| 8 | nulssgt | ⊢ ( { 0s } ∈ 𝒫 No → { 0s } <<s ∅ ) | |
| 9 | 7 8 | mp1i | ⊢ ( 𝜑 → { 0s } <<s ∅ ) |
| 10 | 5 9 | cuteq0 | ⊢ ( 𝜑 → ( { 𝐴 } |s ∅ ) = 0s ) |