Metamath Proof Explorer


Theorem cutneg

Description: The simplest number greater than a negative number is zero. (Contributed by Scott Fenton, 4-Sep-2025)

Ref Expression
Hypotheses cutneg.1
|- ( ph -> A e. No )
cutneg.2
|- ( ph -> A 
Assertion cutneg
|- ( ph -> ( { A } |s (/) ) = 0s )

Proof

Step Hyp Ref Expression
1 cutneg.1
 |-  ( ph -> A e. No )
2 cutneg.2
 |-  ( ph -> A 
3 0sno
 |-  0s e. No
4 3 a1i
 |-  ( ph -> 0s e. No )
5 1 4 2 ssltsn
 |-  ( ph -> { A } <
6 snelpwi
 |-  ( 0s e. No -> { 0s } e. ~P No )
7 3 6 ax-mp
 |-  { 0s } e. ~P No
8 nulssgt
 |-  ( { 0s } e. ~P No -> { 0s } <
9 7 8 mp1i
 |-  ( ph -> { 0s } <
10 5 9 cuteq0
 |-  ( ph -> ( { A } |s (/) ) = 0s )