Description: The simplest number greater than a negative number is zero. (Contributed by Scott Fenton, 4-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cutneg.1 | |- ( ph -> A e. No ) |
|
| cutneg.2 | |- ( ph -> A |
||
| Assertion | cutneg | |- ( ph -> ( { A } |s (/) ) = 0s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cutneg.1 | |- ( ph -> A e. No ) |
|
| 2 | cutneg.2 | |- ( ph -> A |
|
| 3 | 0sno | |- 0s e. No |
|
| 4 | 3 | a1i | |- ( ph -> 0s e. No ) |
| 5 | 1 4 2 | ssltsn | |- ( ph -> { A } < |
| 6 | snelpwi | |- ( 0s e. No -> { 0s } e. ~P No ) |
|
| 7 | 3 6 | ax-mp | |- { 0s } e. ~P No |
| 8 | nulssgt | |- ( { 0s } e. ~P No -> { 0s } < |
|
| 9 | 7 8 | mp1i | |- ( ph -> { 0s } < |
| 10 | 5 9 | cuteq0 | |- ( ph -> ( { A } |s (/) ) = 0s ) |