Metamath Proof Explorer


Theorem cuteq1

Description: Condition for a surreal cut to equal one. (Contributed by Scott Fenton, 12-Mar-2025)

Ref Expression
Hypotheses cuteq1.1
|- ( ph -> 0s e. A )
cuteq1.2
|- ( ph -> A <
cuteq1.3
|- ( ph -> { 1s } <
Assertion cuteq1
|- ( ph -> ( A |s B ) = 1s )

Proof

Step Hyp Ref Expression
1 cuteq1.1
 |-  ( ph -> 0s e. A )
2 cuteq1.2
 |-  ( ph -> A <
3 cuteq1.3
 |-  ( ph -> { 1s } <
4 bday1s
 |-  ( bday ` 1s ) = 1o
5 df-1o
 |-  1o = suc (/)
6 4 5 eqtri
 |-  ( bday ` 1s ) = suc (/)
7 ssltsep
 |-  ( A < A. x e. A A. y e. { 0s } x 
8 dfral2
 |-  ( A. y e. { 0s } x  -. E. y e. { 0s } -. x 
9 8 ralbii
 |-  ( A. x e. A A. y e. { 0s } x  A. x e. A -. E. y e. { 0s } -. x 
10 ralnex
 |-  ( A. x e. A -. E. y e. { 0s } -. x  -. E. x e. A E. y e. { 0s } -. x 
11 9 10 bitri
 |-  ( A. x e. A A. y e. { 0s } x  -. E. x e. A E. y e. { 0s } -. x 
12 7 11 sylib
 |-  ( A < -. E. x e. A E. y e. { 0s } -. x 
13 0sno
 |-  0s e. No
14 sltirr
 |-  ( 0s e. No -> -. 0s 
15 13 14 ax-mp
 |-  -. 0s 
16 breq1
 |-  ( x = 0s -> ( x  0s 
17 16 notbid
 |-  ( x = 0s -> ( -. x  -. 0s 
18 17 rspcev
 |-  ( ( 0s e. A /\ -. 0s  E. x e. A -. x 
19 1 15 18 sylancl
 |-  ( ph -> E. x e. A -. x 
20 13 elexi
 |-  0s e. _V
21 breq2
 |-  ( y = 0s -> ( x  x 
22 21 notbid
 |-  ( y = 0s -> ( -. x  -. x 
23 20 22 rexsn
 |-  ( E. y e. { 0s } -. x  -. x 
24 23 rexbii
 |-  ( E. x e. A E. y e. { 0s } -. x  E. x e. A -. x 
25 19 24 sylibr
 |-  ( ph -> E. x e. A E. y e. { 0s } -. x 
26 12 25 nsyl3
 |-  ( ph -> -. A <
27 26 adantr
 |-  ( ( ph /\ x e. No ) -> -. A <
28 sneq
 |-  ( x = 0s -> { x } = { 0s } )
29 28 breq2d
 |-  ( x = 0s -> ( A < A <
30 29 notbid
 |-  ( x = 0s -> ( -. A < -. A <
31 27 30 syl5ibrcom
 |-  ( ( ph /\ x e. No ) -> ( x = 0s -> -. A <
32 31 necon2ad
 |-  ( ( ph /\ x e. No ) -> ( A < x =/= 0s ) )
33 32 adantrd
 |-  ( ( ph /\ x e. No ) -> ( ( A < x =/= 0s ) )
34 33 impr
 |-  ( ( ph /\ ( x e. No /\ ( A < x =/= 0s )
35 bday0b
 |-  ( x e. No -> ( ( bday ` x ) = (/) <-> x = 0s ) )
36 35 ad2antrl
 |-  ( ( ph /\ ( x e. No /\ ( A < ( ( bday ` x ) = (/) <-> x = 0s ) )
37 36 necon3bid
 |-  ( ( ph /\ ( x e. No /\ ( A < ( ( bday ` x ) =/= (/) <-> x =/= 0s ) )
38 34 37 mpbird
 |-  ( ( ph /\ ( x e. No /\ ( A < ( bday ` x ) =/= (/) )
39 bdayelon
 |-  ( bday ` x ) e. On
40 39 onordi
 |-  Ord ( bday ` x )
41 ord0eln0
 |-  ( Ord ( bday ` x ) -> ( (/) e. ( bday ` x ) <-> ( bday ` x ) =/= (/) ) )
42 40 41 ax-mp
 |-  ( (/) e. ( bday ` x ) <-> ( bday ` x ) =/= (/) )
43 0elon
 |-  (/) e. On
44 43 39 onsucssi
 |-  ( (/) e. ( bday ` x ) <-> suc (/) C_ ( bday ` x ) )
45 42 44 bitr3i
 |-  ( ( bday ` x ) =/= (/) <-> suc (/) C_ ( bday ` x ) )
46 38 45 sylib
 |-  ( ( ph /\ ( x e. No /\ ( A < suc (/) C_ ( bday ` x ) )
47 6 46 eqsstrid
 |-  ( ( ph /\ ( x e. No /\ ( A < ( bday ` 1s ) C_ ( bday ` x ) )
48 47 expr
 |-  ( ( ph /\ x e. No ) -> ( ( A < ( bday ` 1s ) C_ ( bday ` x ) ) )
49 48 ralrimiva
 |-  ( ph -> A. x e. No ( ( A < ( bday ` 1s ) C_ ( bday ` x ) ) )
50 1sno
 |-  1s e. No
51 50 elexi
 |-  1s e. _V
52 51 snnz
 |-  { 1s } =/= (/)
53 sslttr
 |-  ( ( A < A <
54 52 53 mp3an3
 |-  ( ( A < A <
55 2 3 54 syl2anc
 |-  ( ph -> A <
56 eqscut2
 |-  ( ( A < ( ( A |s B ) = 1s <-> ( A < ( bday ` 1s ) C_ ( bday ` x ) ) ) ) )
57 55 50 56 sylancl
 |-  ( ph -> ( ( A |s B ) = 1s <-> ( A < ( bday ` 1s ) C_ ( bday ` x ) ) ) ) )
58 2 3 49 57 mpbir3and
 |-  ( ph -> ( A |s B ) = 1s )