Step |
Hyp |
Ref |
Expression |
1 |
|
cuteq1.1 |
⊢ ( 𝜑 → 0s ∈ 𝐴 ) |
2 |
|
cuteq1.2 |
⊢ ( 𝜑 → 𝐴 <<s { 1s } ) |
3 |
|
cuteq1.3 |
⊢ ( 𝜑 → { 1s } <<s 𝐵 ) |
4 |
|
bday1s |
⊢ ( bday ‘ 1s ) = 1o |
5 |
|
df-1o |
⊢ 1o = suc ∅ |
6 |
4 5
|
eqtri |
⊢ ( bday ‘ 1s ) = suc ∅ |
7 |
|
ssltsep |
⊢ ( 𝐴 <<s { 0s } → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ { 0s } 𝑥 <s 𝑦 ) |
8 |
|
dfral2 |
⊢ ( ∀ 𝑦 ∈ { 0s } 𝑥 <s 𝑦 ↔ ¬ ∃ 𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦 ) |
9 |
8
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ { 0s } 𝑥 <s 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦 ) |
10 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦 ↔ ¬ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦 ) |
11 |
9 10
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ { 0s } 𝑥 <s 𝑦 ↔ ¬ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦 ) |
12 |
7 11
|
sylib |
⊢ ( 𝐴 <<s { 0s } → ¬ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦 ) |
13 |
|
0sno |
⊢ 0s ∈ No |
14 |
|
sltirr |
⊢ ( 0s ∈ No → ¬ 0s <s 0s ) |
15 |
13 14
|
ax-mp |
⊢ ¬ 0s <s 0s |
16 |
|
breq1 |
⊢ ( 𝑥 = 0s → ( 𝑥 <s 0s ↔ 0s <s 0s ) ) |
17 |
16
|
notbid |
⊢ ( 𝑥 = 0s → ( ¬ 𝑥 <s 0s ↔ ¬ 0s <s 0s ) ) |
18 |
17
|
rspcev |
⊢ ( ( 0s ∈ 𝐴 ∧ ¬ 0s <s 0s ) → ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 <s 0s ) |
19 |
1 15 18
|
sylancl |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 <s 0s ) |
20 |
13
|
elexi |
⊢ 0s ∈ V |
21 |
|
breq2 |
⊢ ( 𝑦 = 0s → ( 𝑥 <s 𝑦 ↔ 𝑥 <s 0s ) ) |
22 |
21
|
notbid |
⊢ ( 𝑦 = 0s → ( ¬ 𝑥 <s 𝑦 ↔ ¬ 𝑥 <s 0s ) ) |
23 |
20 22
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦 ↔ ¬ 𝑥 <s 0s ) |
24 |
23
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦 ↔ ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 <s 0s ) |
25 |
19 24
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 0s } ¬ 𝑥 <s 𝑦 ) |
26 |
12 25
|
nsyl3 |
⊢ ( 𝜑 → ¬ 𝐴 <<s { 0s } ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ No ) → ¬ 𝐴 <<s { 0s } ) |
28 |
|
sneq |
⊢ ( 𝑥 = 0s → { 𝑥 } = { 0s } ) |
29 |
28
|
breq2d |
⊢ ( 𝑥 = 0s → ( 𝐴 <<s { 𝑥 } ↔ 𝐴 <<s { 0s } ) ) |
30 |
29
|
notbid |
⊢ ( 𝑥 = 0s → ( ¬ 𝐴 <<s { 𝑥 } ↔ ¬ 𝐴 <<s { 0s } ) ) |
31 |
27 30
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ No ) → ( 𝑥 = 0s → ¬ 𝐴 <<s { 𝑥 } ) ) |
32 |
31
|
necon2ad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ No ) → ( 𝐴 <<s { 𝑥 } → 𝑥 ≠ 0s ) ) |
33 |
32
|
adantrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ No ) → ( ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) → 𝑥 ≠ 0s ) ) |
34 |
33
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ No ∧ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) ) ) → 𝑥 ≠ 0s ) |
35 |
|
bday0b |
⊢ ( 𝑥 ∈ No → ( ( bday ‘ 𝑥 ) = ∅ ↔ 𝑥 = 0s ) ) |
36 |
35
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ No ∧ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) ) ) → ( ( bday ‘ 𝑥 ) = ∅ ↔ 𝑥 = 0s ) ) |
37 |
36
|
necon3bid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ No ∧ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) ) ) → ( ( bday ‘ 𝑥 ) ≠ ∅ ↔ 𝑥 ≠ 0s ) ) |
38 |
34 37
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ No ∧ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) ) ) → ( bday ‘ 𝑥 ) ≠ ∅ ) |
39 |
|
bdayelon |
⊢ ( bday ‘ 𝑥 ) ∈ On |
40 |
39
|
onordi |
⊢ Ord ( bday ‘ 𝑥 ) |
41 |
|
ord0eln0 |
⊢ ( Ord ( bday ‘ 𝑥 ) → ( ∅ ∈ ( bday ‘ 𝑥 ) ↔ ( bday ‘ 𝑥 ) ≠ ∅ ) ) |
42 |
40 41
|
ax-mp |
⊢ ( ∅ ∈ ( bday ‘ 𝑥 ) ↔ ( bday ‘ 𝑥 ) ≠ ∅ ) |
43 |
|
0elon |
⊢ ∅ ∈ On |
44 |
43 39
|
onsucssi |
⊢ ( ∅ ∈ ( bday ‘ 𝑥 ) ↔ suc ∅ ⊆ ( bday ‘ 𝑥 ) ) |
45 |
42 44
|
bitr3i |
⊢ ( ( bday ‘ 𝑥 ) ≠ ∅ ↔ suc ∅ ⊆ ( bday ‘ 𝑥 ) ) |
46 |
38 45
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ No ∧ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) ) ) → suc ∅ ⊆ ( bday ‘ 𝑥 ) ) |
47 |
6 46
|
eqsstrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ No ∧ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) ) ) → ( bday ‘ 1s ) ⊆ ( bday ‘ 𝑥 ) ) |
48 |
47
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ No ) → ( ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) → ( bday ‘ 1s ) ⊆ ( bday ‘ 𝑥 ) ) ) |
49 |
48
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ( ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) → ( bday ‘ 1s ) ⊆ ( bday ‘ 𝑥 ) ) ) |
50 |
|
1sno |
⊢ 1s ∈ No |
51 |
50
|
elexi |
⊢ 1s ∈ V |
52 |
51
|
snnz |
⊢ { 1s } ≠ ∅ |
53 |
|
sslttr |
⊢ ( ( 𝐴 <<s { 1s } ∧ { 1s } <<s 𝐵 ∧ { 1s } ≠ ∅ ) → 𝐴 <<s 𝐵 ) |
54 |
52 53
|
mp3an3 |
⊢ ( ( 𝐴 <<s { 1s } ∧ { 1s } <<s 𝐵 ) → 𝐴 <<s 𝐵 ) |
55 |
2 3 54
|
syl2anc |
⊢ ( 𝜑 → 𝐴 <<s 𝐵 ) |
56 |
|
eqscut2 |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 1s ∈ No ) → ( ( 𝐴 |s 𝐵 ) = 1s ↔ ( 𝐴 <<s { 1s } ∧ { 1s } <<s 𝐵 ∧ ∀ 𝑥 ∈ No ( ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) → ( bday ‘ 1s ) ⊆ ( bday ‘ 𝑥 ) ) ) ) ) |
57 |
55 50 56
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐴 |s 𝐵 ) = 1s ↔ ( 𝐴 <<s { 1s } ∧ { 1s } <<s 𝐵 ∧ ∀ 𝑥 ∈ No ( ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) → ( bday ‘ 1s ) ⊆ ( bday ‘ 𝑥 ) ) ) ) ) |
58 |
2 3 49 57
|
mpbir3and |
⊢ ( 𝜑 → ( 𝐴 |s 𝐵 ) = 1s ) |