Metamath Proof Explorer
Description: The simplest number greater than a negative number is zero.
(Contributed by Scott Fenton, 4-Sep-2025)
|
|
Ref |
Expression |
|
Hypotheses |
cutneg.1 |
|
|
|
cutneg.2 |
|
|
Assertion |
cutneg |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cutneg.1 |
|
| 2 |
|
cutneg.2 |
|
| 3 |
|
0sno |
|
| 4 |
3
|
a1i |
|
| 5 |
1 4 2
|
ssltsn |
|
| 6 |
|
snelpwi |
|
| 7 |
3 6
|
ax-mp |
|
| 8 |
|
nulssgt |
|
| 9 |
7 8
|
mp1i |
|
| 10 |
5 9
|
cuteq0 |
|