Metamath Proof Explorer


Theorem cutneg

Description: The simplest number greater than a negative number is zero. (Contributed by Scott Fenton, 4-Sep-2025)

Ref Expression
Hypotheses cutneg.1 φ A No
cutneg.2 φ A < s 0 s
Assertion cutneg φ A | s = 0 s

Proof

Step Hyp Ref Expression
1 cutneg.1 φ A No
2 cutneg.2 φ A < s 0 s
3 0sno 0 s No
4 3 a1i φ 0 s No
5 1 4 2 ssltsn φ A s 0 s
6 snelpwi 0 s No 0 s 𝒫 No
7 3 6 ax-mp 0 s 𝒫 No
8 nulssgt 0 s 𝒫 No 0 s s
9 7 8 mp1i φ 0 s s
10 5 9 cuteq0 φ A | s = 0 s