Metamath Proof Explorer


Theorem n0scut2

Description: A cut form for the successor of a non-negative surreal integer. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Assertion n0scut2
|- ( A e. NN0_s -> ( A +s 1s ) = ( { A } |s (/) ) )

Proof

Step Hyp Ref Expression
1 peano2n0s
 |-  ( A e. NN0_s -> ( A +s 1s ) e. NN0_s )
2 n0scut
 |-  ( ( A +s 1s ) e. NN0_s -> ( A +s 1s ) = ( { ( ( A +s 1s ) -s 1s ) } |s (/) ) )
3 1 2 syl
 |-  ( A e. NN0_s -> ( A +s 1s ) = ( { ( ( A +s 1s ) -s 1s ) } |s (/) ) )
4 n0sno
 |-  ( A e. NN0_s -> A e. No )
5 1sno
 |-  1s e. No
6 pncans
 |-  ( ( A e. No /\ 1s e. No ) -> ( ( A +s 1s ) -s 1s ) = A )
7 4 5 6 sylancl
 |-  ( A e. NN0_s -> ( ( A +s 1s ) -s 1s ) = A )
8 7 sneqd
 |-  ( A e. NN0_s -> { ( ( A +s 1s ) -s 1s ) } = { A } )
9 8 oveq1d
 |-  ( A e. NN0_s -> ( { ( ( A +s 1s ) -s 1s ) } |s (/) ) = ( { A } |s (/) ) )
10 3 9 eqtrd
 |-  ( A e. NN0_s -> ( A +s 1s ) = ( { A } |s (/) ) )