| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2n0s |
|- ( A e. NN0_s -> ( A +s 1s ) e. NN0_s ) |
| 2 |
|
n0scut |
|- ( ( A +s 1s ) e. NN0_s -> ( A +s 1s ) = ( { ( ( A +s 1s ) -s 1s ) } |s (/) ) ) |
| 3 |
1 2
|
syl |
|- ( A e. NN0_s -> ( A +s 1s ) = ( { ( ( A +s 1s ) -s 1s ) } |s (/) ) ) |
| 4 |
|
n0sno |
|- ( A e. NN0_s -> A e. No ) |
| 5 |
|
1sno |
|- 1s e. No |
| 6 |
|
pncans |
|- ( ( A e. No /\ 1s e. No ) -> ( ( A +s 1s ) -s 1s ) = A ) |
| 7 |
4 5 6
|
sylancl |
|- ( A e. NN0_s -> ( ( A +s 1s ) -s 1s ) = A ) |
| 8 |
7
|
sneqd |
|- ( A e. NN0_s -> { ( ( A +s 1s ) -s 1s ) } = { A } ) |
| 9 |
8
|
oveq1d |
|- ( A e. NN0_s -> ( { ( ( A +s 1s ) -s 1s ) } |s (/) ) = ( { A } |s (/) ) ) |
| 10 |
3 9
|
eqtrd |
|- ( A e. NN0_s -> ( A +s 1s ) = ( { A } |s (/) ) ) |