| Step | Hyp | Ref | Expression | 
						
							| 1 |  | n0sno |  |-  ( A e. NN0_s -> A e. No ) | 
						
							| 2 |  | 1sno |  |-  1s e. No | 
						
							| 3 |  | subscl |  |-  ( ( A e. No /\ 1s e. No ) -> ( A -s 1s ) e. No ) | 
						
							| 4 | 1 2 3 | sylancl |  |-  ( A e. NN0_s -> ( A -s 1s ) e. No ) | 
						
							| 5 |  | ovex |  |-  ( A -s 1s ) e. _V | 
						
							| 6 | 5 | snelpw |  |-  ( ( A -s 1s ) e. No <-> { ( A -s 1s ) } e. ~P No ) | 
						
							| 7 | 4 6 | sylib |  |-  ( A e. NN0_s -> { ( A -s 1s ) } e. ~P No ) | 
						
							| 8 |  | n0scut |  |-  ( A e. NN0_s -> A = ( { ( A -s 1s ) } |s (/) ) ) | 
						
							| 9 |  | oveq1 |  |-  ( x = { ( A -s 1s ) } -> ( x |s (/) ) = ( { ( A -s 1s ) } |s (/) ) ) | 
						
							| 10 | 9 | eqeq2d |  |-  ( x = { ( A -s 1s ) } -> ( A = ( x |s (/) ) <-> A = ( { ( A -s 1s ) } |s (/) ) ) ) | 
						
							| 11 | 10 | rspcev |  |-  ( ( { ( A -s 1s ) } e. ~P No /\ A = ( { ( A -s 1s ) } |s (/) ) ) -> E. x e. ~P No A = ( x |s (/) ) ) | 
						
							| 12 | 7 8 11 | syl2anc |  |-  ( A e. NN0_s -> E. x e. ~P No A = ( x |s (/) ) ) | 
						
							| 13 |  | elons2 |  |-  ( A e. On_s <-> E. x e. ~P No A = ( x |s (/) ) ) | 
						
							| 14 | 12 13 | sylibr |  |-  ( A e. NN0_s -> A e. On_s ) |