Step |
Hyp |
Ref |
Expression |
1 |
|
n0sno |
|- ( A e. NN0_s -> A e. No ) |
2 |
|
1sno |
|- 1s e. No |
3 |
|
subscl |
|- ( ( A e. No /\ 1s e. No ) -> ( A -s 1s ) e. No ) |
4 |
1 2 3
|
sylancl |
|- ( A e. NN0_s -> ( A -s 1s ) e. No ) |
5 |
|
ovex |
|- ( A -s 1s ) e. _V |
6 |
5
|
snelpw |
|- ( ( A -s 1s ) e. No <-> { ( A -s 1s ) } e. ~P No ) |
7 |
4 6
|
sylib |
|- ( A e. NN0_s -> { ( A -s 1s ) } e. ~P No ) |
8 |
|
n0scut |
|- ( A e. NN0_s -> A = ( { ( A -s 1s ) } |s (/) ) ) |
9 |
|
oveq1 |
|- ( x = { ( A -s 1s ) } -> ( x |s (/) ) = ( { ( A -s 1s ) } |s (/) ) ) |
10 |
9
|
eqeq2d |
|- ( x = { ( A -s 1s ) } -> ( A = ( x |s (/) ) <-> A = ( { ( A -s 1s ) } |s (/) ) ) ) |
11 |
10
|
rspcev |
|- ( ( { ( A -s 1s ) } e. ~P No /\ A = ( { ( A -s 1s ) } |s (/) ) ) -> E. x e. ~P No A = ( x |s (/) ) ) |
12 |
7 8 11
|
syl2anc |
|- ( A e. NN0_s -> E. x e. ~P No A = ( x |s (/) ) ) |
13 |
|
elons2 |
|- ( A e. On_s <-> E. x e. ~P No A = ( x |s (/) ) ) |
14 |
12 13
|
sylibr |
|- ( A e. NN0_s -> A e. On_s ) |