Metamath Proof Explorer


Theorem n0ons

Description: A surreal natural is a surreal ordinal. (Contributed by Scott Fenton, 2-Apr-2025)

Ref Expression
Assertion n0ons
|- ( A e. NN0_s -> A e. On_s )

Proof

Step Hyp Ref Expression
1 n0sno
 |-  ( A e. NN0_s -> A e. No )
2 1sno
 |-  1s e. No
3 subscl
 |-  ( ( A e. No /\ 1s e. No ) -> ( A -s 1s ) e. No )
4 1 2 3 sylancl
 |-  ( A e. NN0_s -> ( A -s 1s ) e. No )
5 ovex
 |-  ( A -s 1s ) e. _V
6 5 snelpw
 |-  ( ( A -s 1s ) e. No <-> { ( A -s 1s ) } e. ~P No )
7 4 6 sylib
 |-  ( A e. NN0_s -> { ( A -s 1s ) } e. ~P No )
8 n0scut
 |-  ( A e. NN0_s -> A = ( { ( A -s 1s ) } |s (/) ) )
9 oveq1
 |-  ( x = { ( A -s 1s ) } -> ( x |s (/) ) = ( { ( A -s 1s ) } |s (/) ) )
10 9 eqeq2d
 |-  ( x = { ( A -s 1s ) } -> ( A = ( x |s (/) ) <-> A = ( { ( A -s 1s ) } |s (/) ) ) )
11 10 rspcev
 |-  ( ( { ( A -s 1s ) } e. ~P No /\ A = ( { ( A -s 1s ) } |s (/) ) ) -> E. x e. ~P No A = ( x |s (/) ) )
12 7 8 11 syl2anc
 |-  ( A e. NN0_s -> E. x e. ~P No A = ( x |s (/) ) )
13 elons2
 |-  ( A e. On_s <-> E. x e. ~P No A = ( x |s (/) ) )
14 12 13 sylibr
 |-  ( A e. NN0_s -> A e. On_s )