Metamath Proof Explorer


Theorem n0ons

Description: A surreal natural is a surreal ordinal. (Contributed by Scott Fenton, 2-Apr-2025)

Ref Expression
Assertion n0ons A 0s A On s

Proof

Step Hyp Ref Expression
1 n0sno A 0s A No
2 1sno 1 s No
3 subscl A No 1 s No A - s 1 s No
4 1 2 3 sylancl A 0s A - s 1 s No
5 ovex A - s 1 s V
6 5 snelpw A - s 1 s No A - s 1 s 𝒫 No
7 4 6 sylib A 0s A - s 1 s 𝒫 No
8 n0scut A 0s A = A - s 1 s | s
9 oveq1 x = A - s 1 s x | s = A - s 1 s | s
10 9 eqeq2d x = A - s 1 s A = x | s A = A - s 1 s | s
11 10 rspcev A - s 1 s 𝒫 No A = A - s 1 s | s x 𝒫 No A = x | s
12 7 8 11 syl2anc A 0s x 𝒫 No A = x | s
13 elons2 A On s x 𝒫 No A = x | s
14 12 13 sylibr A 0s A On s