Database
SURREAL NUMBERS
Subsystems of surreals
Natural numbers
n0ons
Next ⟩
nnne0s
Metamath Proof Explorer
Ascii
Unicode
Theorem
n0ons
Description:
A surreal natural is a surreal ordinal.
(Contributed by
Scott Fenton
, 2-Apr-2025)
Ref
Expression
Assertion
n0ons
⊢
A
∈
ℕ
0s
→
A
∈
On
s
Proof
Step
Hyp
Ref
Expression
1
n0sno
⊢
A
∈
ℕ
0s
→
A
∈
No
2
1sno
⊢
1
s
∈
No
3
subscl
⊢
A
∈
No
∧
1
s
∈
No
→
A
-
s
1
s
∈
No
4
1
2
3
sylancl
⊢
A
∈
ℕ
0s
→
A
-
s
1
s
∈
No
5
ovex
⊢
A
-
s
1
s
∈
V
6
5
snelpw
⊢
A
-
s
1
s
∈
No
↔
A
-
s
1
s
∈
𝒫
No
7
4
6
sylib
⊢
A
∈
ℕ
0s
→
A
-
s
1
s
∈
𝒫
No
8
n0scut
⊢
A
∈
ℕ
0s
→
A
=
A
-
s
1
s
|
s
∅
9
oveq1
⊢
x
=
A
-
s
1
s
→
x
|
s
∅
=
A
-
s
1
s
|
s
∅
10
9
eqeq2d
⊢
x
=
A
-
s
1
s
→
A
=
x
|
s
∅
↔
A
=
A
-
s
1
s
|
s
∅
11
10
rspcev
⊢
A
-
s
1
s
∈
𝒫
No
∧
A
=
A
-
s
1
s
|
s
∅
→
∃
x
∈
𝒫
No
A
=
x
|
s
∅
12
7
8
11
syl2anc
⊢
A
∈
ℕ
0s
→
∃
x
∈
𝒫
No
A
=
x
|
s
∅
13
elons2
⊢
A
∈
On
s
↔
∃
x
∈
𝒫
No
A
=
x
|
s
∅
14
12
13
sylibr
⊢
A
∈
ℕ
0s
→
A
∈
On
s