| Step | Hyp | Ref | Expression | 
						
							| 1 |  | n0sno | ⊢ ( 𝐴  ∈  ℕ0s  →  𝐴  ∈   No  ) | 
						
							| 2 |  | 1sno | ⊢  1s   ∈   No | 
						
							| 3 |  | subscl | ⊢ ( ( 𝐴  ∈   No   ∧   1s   ∈   No  )  →  ( 𝐴  -s   1s  )  ∈   No  ) | 
						
							| 4 | 1 2 3 | sylancl | ⊢ ( 𝐴  ∈  ℕ0s  →  ( 𝐴  -s   1s  )  ∈   No  ) | 
						
							| 5 |  | ovex | ⊢ ( 𝐴  -s   1s  )  ∈  V | 
						
							| 6 | 5 | snelpw | ⊢ ( ( 𝐴  -s   1s  )  ∈   No   ↔  { ( 𝐴  -s   1s  ) }  ∈  𝒫   No  ) | 
						
							| 7 | 4 6 | sylib | ⊢ ( 𝐴  ∈  ℕ0s  →  { ( 𝐴  -s   1s  ) }  ∈  𝒫   No  ) | 
						
							| 8 |  | n0scut | ⊢ ( 𝐴  ∈  ℕ0s  →  𝐴  =  ( { ( 𝐴  -s   1s  ) }  |s  ∅ ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑥  =  { ( 𝐴  -s   1s  ) }  →  ( 𝑥  |s  ∅ )  =  ( { ( 𝐴  -s   1s  ) }  |s  ∅ ) ) | 
						
							| 10 | 9 | eqeq2d | ⊢ ( 𝑥  =  { ( 𝐴  -s   1s  ) }  →  ( 𝐴  =  ( 𝑥  |s  ∅ )  ↔  𝐴  =  ( { ( 𝐴  -s   1s  ) }  |s  ∅ ) ) ) | 
						
							| 11 | 10 | rspcev | ⊢ ( ( { ( 𝐴  -s   1s  ) }  ∈  𝒫   No   ∧  𝐴  =  ( { ( 𝐴  -s   1s  ) }  |s  ∅ ) )  →  ∃ 𝑥  ∈  𝒫   No  𝐴  =  ( 𝑥  |s  ∅ ) ) | 
						
							| 12 | 7 8 11 | syl2anc | ⊢ ( 𝐴  ∈  ℕ0s  →  ∃ 𝑥  ∈  𝒫   No  𝐴  =  ( 𝑥  |s  ∅ ) ) | 
						
							| 13 |  | elons2 | ⊢ ( 𝐴  ∈  Ons  ↔  ∃ 𝑥  ∈  𝒫   No  𝐴  =  ( 𝑥  |s  ∅ ) ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( 𝐴  ∈  ℕ0s  →  𝐴  ∈  Ons ) |