Metamath Proof Explorer


Theorem n0ons

Description: A surreal natural is a surreal ordinal. (Contributed by Scott Fenton, 2-Apr-2025)

Ref Expression
Assertion n0ons ( 𝐴 ∈ ℕ0s𝐴 ∈ Ons )

Proof

Step Hyp Ref Expression
1 n0sno ( 𝐴 ∈ ℕ0s𝐴 No )
2 1sno 1s No
3 subscl ( ( 𝐴 No ∧ 1s No ) → ( 𝐴 -s 1s ) ∈ No )
4 1 2 3 sylancl ( 𝐴 ∈ ℕ0s → ( 𝐴 -s 1s ) ∈ No )
5 ovex ( 𝐴 -s 1s ) ∈ V
6 5 snelpw ( ( 𝐴 -s 1s ) ∈ No ↔ { ( 𝐴 -s 1s ) } ∈ 𝒫 No )
7 4 6 sylib ( 𝐴 ∈ ℕ0s → { ( 𝐴 -s 1s ) } ∈ 𝒫 No )
8 n0scut ( 𝐴 ∈ ℕ0s𝐴 = ( { ( 𝐴 -s 1s ) } |s ∅ ) )
9 oveq1 ( 𝑥 = { ( 𝐴 -s 1s ) } → ( 𝑥 |s ∅ ) = ( { ( 𝐴 -s 1s ) } |s ∅ ) )
10 9 eqeq2d ( 𝑥 = { ( 𝐴 -s 1s ) } → ( 𝐴 = ( 𝑥 |s ∅ ) ↔ 𝐴 = ( { ( 𝐴 -s 1s ) } |s ∅ ) ) )
11 10 rspcev ( ( { ( 𝐴 -s 1s ) } ∈ 𝒫 No 𝐴 = ( { ( 𝐴 -s 1s ) } |s ∅ ) ) → ∃ 𝑥 ∈ 𝒫 No 𝐴 = ( 𝑥 |s ∅ ) )
12 7 8 11 syl2anc ( 𝐴 ∈ ℕ0s → ∃ 𝑥 ∈ 𝒫 No 𝐴 = ( 𝑥 |s ∅ ) )
13 elons2 ( 𝐴 ∈ Ons ↔ ∃ 𝑥 ∈ 𝒫 No 𝐴 = ( 𝑥 |s ∅ ) )
14 12 13 sylibr ( 𝐴 ∈ ℕ0s𝐴 ∈ Ons )