| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0sno |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 ∈ No ) |
| 2 |
|
1sno |
⊢ 1s ∈ No |
| 3 |
|
subscl |
⊢ ( ( 𝐴 ∈ No ∧ 1s ∈ No ) → ( 𝐴 -s 1s ) ∈ No ) |
| 4 |
1 2 3
|
sylancl |
⊢ ( 𝐴 ∈ ℕ0s → ( 𝐴 -s 1s ) ∈ No ) |
| 5 |
|
ovex |
⊢ ( 𝐴 -s 1s ) ∈ V |
| 6 |
5
|
snelpw |
⊢ ( ( 𝐴 -s 1s ) ∈ No ↔ { ( 𝐴 -s 1s ) } ∈ 𝒫 No ) |
| 7 |
4 6
|
sylib |
⊢ ( 𝐴 ∈ ℕ0s → { ( 𝐴 -s 1s ) } ∈ 𝒫 No ) |
| 8 |
|
n0scut |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 = ( { ( 𝐴 -s 1s ) } |s ∅ ) ) |
| 9 |
|
oveq1 |
⊢ ( 𝑥 = { ( 𝐴 -s 1s ) } → ( 𝑥 |s ∅ ) = ( { ( 𝐴 -s 1s ) } |s ∅ ) ) |
| 10 |
9
|
eqeq2d |
⊢ ( 𝑥 = { ( 𝐴 -s 1s ) } → ( 𝐴 = ( 𝑥 |s ∅ ) ↔ 𝐴 = ( { ( 𝐴 -s 1s ) } |s ∅ ) ) ) |
| 11 |
10
|
rspcev |
⊢ ( ( { ( 𝐴 -s 1s ) } ∈ 𝒫 No ∧ 𝐴 = ( { ( 𝐴 -s 1s ) } |s ∅ ) ) → ∃ 𝑥 ∈ 𝒫 No 𝐴 = ( 𝑥 |s ∅ ) ) |
| 12 |
7 8 11
|
syl2anc |
⊢ ( 𝐴 ∈ ℕ0s → ∃ 𝑥 ∈ 𝒫 No 𝐴 = ( 𝑥 |s ∅ ) ) |
| 13 |
|
elons2 |
⊢ ( 𝐴 ∈ Ons ↔ ∃ 𝑥 ∈ 𝒫 No 𝐴 = ( 𝑥 |s ∅ ) ) |
| 14 |
12 13
|
sylibr |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 ∈ Ons ) |