| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0mulscl |
|- ( ( A e. NN0_s /\ B e. NN0_s ) -> ( A x.s B ) e. NN0_s ) |
| 2 |
1
|
ad2ant2r |
|- ( ( ( A e. NN0_s /\ 0s ( A x.s B ) e. NN0_s ) |
| 3 |
|
simpll |
|- ( ( ( A e. NN0_s /\ 0s A e. NN0_s ) |
| 4 |
3
|
n0snod |
|- ( ( ( A e. NN0_s /\ 0s A e. No ) |
| 5 |
|
simprl |
|- ( ( ( A e. NN0_s /\ 0s B e. NN0_s ) |
| 6 |
5
|
n0snod |
|- ( ( ( A e. NN0_s /\ 0s B e. No ) |
| 7 |
|
simplr |
|- ( ( ( A e. NN0_s /\ 0s 0s |
| 8 |
|
simprr |
|- ( ( ( A e. NN0_s /\ 0s 0s |
| 9 |
4 6 7 8
|
mulsgt0d |
|- ( ( ( A e. NN0_s /\ 0s 0s |
| 10 |
2 9
|
jca |
|- ( ( ( A e. NN0_s /\ 0s ( ( A x.s B ) e. NN0_s /\ 0s |
| 11 |
|
elnns2 |
|- ( A e. NN_s <-> ( A e. NN0_s /\ 0s |
| 12 |
|
elnns2 |
|- ( B e. NN_s <-> ( B e. NN0_s /\ 0s |
| 13 |
11 12
|
anbi12i |
|- ( ( A e. NN_s /\ B e. NN_s ) <-> ( ( A e. NN0_s /\ 0s |
| 14 |
|
elnns2 |
|- ( ( A x.s B ) e. NN_s <-> ( ( A x.s B ) e. NN0_s /\ 0s |
| 15 |
10 13 14
|
3imtr4i |
|- ( ( A e. NN_s /\ B e. NN_s ) -> ( A x.s B ) e. NN_s ) |