Metamath Proof Explorer


Theorem peano2nns

Description: Peano postulate for positive surreal integers. One plus a positive surreal integer is a positive surreal integer. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Assertion peano2nns ( 𝐴 ∈ ℕs → ( 𝐴 +s 1s ) ∈ ℕs )

Proof

Step Hyp Ref Expression
1 1nns 1s ∈ ℕs
2 nnaddscl ( ( 𝐴 ∈ ℕs ∧ 1s ∈ ℕs ) → ( 𝐴 +s 1s ) ∈ ℕs )
3 1 2 mpan2 ( 𝐴 ∈ ℕs → ( 𝐴 +s 1s ) ∈ ℕs )