| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-zs |  |-  ZZ_s = ( -s " ( NN_s X. NN_s ) ) | 
						
							| 2 | 1 | eleq2i |  |-  ( A e. ZZ_s <-> A e. ( -s " ( NN_s X. NN_s ) ) ) | 
						
							| 3 |  | subsfn |  |-  -s Fn ( No X. No ) | 
						
							| 4 |  | nnssno |  |-  NN_s C_ No | 
						
							| 5 |  | xpss12 |  |-  ( ( NN_s C_ No /\ NN_s C_ No ) -> ( NN_s X. NN_s ) C_ ( No X. No ) ) | 
						
							| 6 | 4 4 5 | mp2an |  |-  ( NN_s X. NN_s ) C_ ( No X. No ) | 
						
							| 7 |  | ovelimab |  |-  ( ( -s Fn ( No X. No ) /\ ( NN_s X. NN_s ) C_ ( No X. No ) ) -> ( A e. ( -s " ( NN_s X. NN_s ) ) <-> E. x e. NN_s E. y e. NN_s A = ( x -s y ) ) ) | 
						
							| 8 | 3 6 7 | mp2an |  |-  ( A e. ( -s " ( NN_s X. NN_s ) ) <-> E. x e. NN_s E. y e. NN_s A = ( x -s y ) ) | 
						
							| 9 | 2 8 | bitri |  |-  ( A e. ZZ_s <-> E. x e. NN_s E. y e. NN_s A = ( x -s y ) ) |