Step |
Hyp |
Ref |
Expression |
1 |
|
df-zs |
|- ZZ_s = ( -s " ( NN_s X. NN_s ) ) |
2 |
1
|
eleq2i |
|- ( A e. ZZ_s <-> A e. ( -s " ( NN_s X. NN_s ) ) ) |
3 |
|
subsfn |
|- -s Fn ( No X. No ) |
4 |
|
nnssno |
|- NN_s C_ No |
5 |
|
xpss12 |
|- ( ( NN_s C_ No /\ NN_s C_ No ) -> ( NN_s X. NN_s ) C_ ( No X. No ) ) |
6 |
4 4 5
|
mp2an |
|- ( NN_s X. NN_s ) C_ ( No X. No ) |
7 |
|
ovelimab |
|- ( ( -s Fn ( No X. No ) /\ ( NN_s X. NN_s ) C_ ( No X. No ) ) -> ( A e. ( -s " ( NN_s X. NN_s ) ) <-> E. x e. NN_s E. y e. NN_s A = ( x -s y ) ) ) |
8 |
3 6 7
|
mp2an |
|- ( A e. ( -s " ( NN_s X. NN_s ) ) <-> E. x e. NN_s E. y e. NN_s A = ( x -s y ) ) |
9 |
2 8
|
bitri |
|- ( A e. ZZ_s <-> E. x e. NN_s E. y e. NN_s A = ( x -s y ) ) |