Description: The difference of two surreal positive integers is an integer. (Contributed by Scott Fenton, 25-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnzsubs | |- ( ( A e. NN_s /\ B e. NN_s ) -> ( A -s B ) e. ZZ_s ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | |- ( A -s B ) = ( A -s B ) | |
| 2 | rspceov | |- ( ( A e. NN_s /\ B e. NN_s /\ ( A -s B ) = ( A -s B ) ) -> E. x e. NN_s E. y e. NN_s ( A -s B ) = ( x -s y ) ) | |
| 3 | 1 2 | mp3an3 | |- ( ( A e. NN_s /\ B e. NN_s ) -> E. x e. NN_s E. y e. NN_s ( A -s B ) = ( x -s y ) ) | 
| 4 | elzs | |- ( ( A -s B ) e. ZZ_s <-> E. x e. NN_s E. y e. NN_s ( A -s B ) = ( x -s y ) ) | |
| 5 | 3 4 | sylibr | |- ( ( A e. NN_s /\ B e. NN_s ) -> ( A -s B ) e. ZZ_s ) |