Metamath Proof Explorer


Theorem nnzsubs

Description: The difference of two surreal positive integers is an integer. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Assertion nnzsubs
|- ( ( A e. NN_s /\ B e. NN_s ) -> ( A -s B ) e. ZZ_s )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( A -s B ) = ( A -s B )
2 rspceov
 |-  ( ( A e. NN_s /\ B e. NN_s /\ ( A -s B ) = ( A -s B ) ) -> E. x e. NN_s E. y e. NN_s ( A -s B ) = ( x -s y ) )
3 1 2 mp3an3
 |-  ( ( A e. NN_s /\ B e. NN_s ) -> E. x e. NN_s E. y e. NN_s ( A -s B ) = ( x -s y ) )
4 elzs
 |-  ( ( A -s B ) e. ZZ_s <-> E. x e. NN_s E. y e. NN_s ( A -s B ) = ( x -s y ) )
5 3 4 sylibr
 |-  ( ( A e. NN_s /\ B e. NN_s ) -> ( A -s B ) e. ZZ_s )