Metamath Proof Explorer


Theorem nnzsubs

Description: The difference of two surreal positive integers is an integer. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Assertion nnzsubs A s B s A - s B s

Proof

Step Hyp Ref Expression
1 eqid A - s B = A - s B
2 rspceov A s B s A - s B = A - s B x s y s A - s B = x - s y
3 1 2 mp3an3 A s B s x s y s A - s B = x - s y
4 elzs A - s B s x s y s A - s B = x - s y
5 3 4 sylibr A s B s A - s B s