Metamath Proof Explorer


Theorem elzs

Description: Membership in the set of surreal integers. (Contributed by Scott Fenton, 17-May-2025)

Ref Expression
Assertion elzs A s x s y s A = x - s y

Proof

Step Hyp Ref Expression
1 df-zs s = - s s × s
2 1 eleq2i A s A - s s × s
3 subsfn - s Fn No × No
4 nnssno s No
5 xpss12 s No s No s × s No × No
6 4 4 5 mp2an s × s No × No
7 ovelimab - s Fn No × No s × s No × No A - s s × s x s y s A = x - s y
8 3 6 7 mp2an A - s s × s x s y s A = x - s y
9 2 8 bitri A s x s y s A = x - s y