Database
SURREAL NUMBERS
Subsystems of surreals
Integers
elzs
Next ⟩
nnzsubs
Metamath Proof Explorer
Ascii
Unicode
Theorem
elzs
Description:
Membership in the set of surreal integers.
(Contributed by
Scott Fenton
, 17-May-2025)
Ref
Expression
Assertion
elzs
⊢
A
∈
ℤ
s
↔
∃
x
∈
ℕ
s
∃
y
∈
ℕ
s
A
=
x
-
s
y
Proof
Step
Hyp
Ref
Expression
1
df-zs
⊢
ℤ
s
=
-
s
ℕ
s
×
ℕ
s
2
1
eleq2i
⊢
A
∈
ℤ
s
↔
A
∈
-
s
ℕ
s
×
ℕ
s
3
subsfn
⊢
-
s
Fn
No
×
No
4
nnssno
⊢
ℕ
s
⊆
No
5
xpss12
⊢
ℕ
s
⊆
No
∧
ℕ
s
⊆
No
→
ℕ
s
×
ℕ
s
⊆
No
×
No
6
4
4
5
mp2an
⊢
ℕ
s
×
ℕ
s
⊆
No
×
No
7
ovelimab
⊢
-
s
Fn
No
×
No
∧
ℕ
s
×
ℕ
s
⊆
No
×
No
→
A
∈
-
s
ℕ
s
×
ℕ
s
↔
∃
x
∈
ℕ
s
∃
y
∈
ℕ
s
A
=
x
-
s
y
8
3
6
7
mp2an
⊢
A
∈
-
s
ℕ
s
×
ℕ
s
↔
∃
x
∈
ℕ
s
∃
y
∈
ℕ
s
A
=
x
-
s
y
9
2
8
bitri
⊢
A
∈
ℤ
s
↔
∃
x
∈
ℕ
s
∃
y
∈
ℕ
s
A
=
x
-
s
y