Step |
Hyp |
Ref |
Expression |
1 |
|
df-zs |
⊢ ℤs = ( -s “ ( ℕs × ℕs ) ) |
2 |
1
|
eleq2i |
⊢ ( 𝐴 ∈ ℤs ↔ 𝐴 ∈ ( -s “ ( ℕs × ℕs ) ) ) |
3 |
|
subsfn |
⊢ -s Fn ( No × No ) |
4 |
|
nnssno |
⊢ ℕs ⊆ No |
5 |
|
xpss12 |
⊢ ( ( ℕs ⊆ No ∧ ℕs ⊆ No ) → ( ℕs × ℕs ) ⊆ ( No × No ) ) |
6 |
4 4 5
|
mp2an |
⊢ ( ℕs × ℕs ) ⊆ ( No × No ) |
7 |
|
ovelimab |
⊢ ( ( -s Fn ( No × No ) ∧ ( ℕs × ℕs ) ⊆ ( No × No ) ) → ( 𝐴 ∈ ( -s “ ( ℕs × ℕs ) ) ↔ ∃ 𝑥 ∈ ℕs ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ) ) |
8 |
3 6 7
|
mp2an |
⊢ ( 𝐴 ∈ ( -s “ ( ℕs × ℕs ) ) ↔ ∃ 𝑥 ∈ ℕs ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ) |
9 |
2 8
|
bitri |
⊢ ( 𝐴 ∈ ℤs ↔ ∃ 𝑥 ∈ ℕs ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ) |