| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-zs | ⊢ ℤs  =  (  -s   “  ( ℕs  ×  ℕs ) ) | 
						
							| 2 | 1 | eleq2i | ⊢ ( 𝐴  ∈  ℤs  ↔  𝐴  ∈  (  -s   “  ( ℕs  ×  ℕs ) ) ) | 
						
							| 3 |  | subsfn | ⊢  -s   Fn  (  No   ×   No  ) | 
						
							| 4 |  | nnssno | ⊢ ℕs  ⊆   No | 
						
							| 5 |  | xpss12 | ⊢ ( ( ℕs  ⊆   No   ∧  ℕs  ⊆   No  )  →  ( ℕs  ×  ℕs )  ⊆  (  No   ×   No  ) ) | 
						
							| 6 | 4 4 5 | mp2an | ⊢ ( ℕs  ×  ℕs )  ⊆  (  No   ×   No  ) | 
						
							| 7 |  | ovelimab | ⊢ ( (  -s   Fn  (  No   ×   No  )  ∧  ( ℕs  ×  ℕs )  ⊆  (  No   ×   No  ) )  →  ( 𝐴  ∈  (  -s   “  ( ℕs  ×  ℕs ) )  ↔  ∃ 𝑥  ∈  ℕs ∃ 𝑦  ∈  ℕs 𝐴  =  ( 𝑥  -s  𝑦 ) ) ) | 
						
							| 8 | 3 6 7 | mp2an | ⊢ ( 𝐴  ∈  (  -s   “  ( ℕs  ×  ℕs ) )  ↔  ∃ 𝑥  ∈  ℕs ∃ 𝑦  ∈  ℕs 𝐴  =  ( 𝑥  -s  𝑦 ) ) | 
						
							| 9 | 2 8 | bitri | ⊢ ( 𝐴  ∈  ℤs  ↔  ∃ 𝑥  ∈  ℕs ∃ 𝑦  ∈  ℕs 𝐴  =  ( 𝑥  -s  𝑦 ) ) |