Metamath Proof Explorer


Theorem elzs

Description: Membership in the set of surreal integers. (Contributed by Scott Fenton, 17-May-2025)

Ref Expression
Assertion elzs ( 𝐴 ∈ ℤs ↔ ∃ 𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) )

Proof

Step Hyp Ref Expression
1 df-zs s = ( -s “ ( ℕs × ℕs ) )
2 1 eleq2i ( 𝐴 ∈ ℤs𝐴 ∈ ( -s “ ( ℕs × ℕs ) ) )
3 subsfn -s Fn ( No × No )
4 nnssno s No
5 xpss12 ( ( ℕs No ∧ ℕs No ) → ( ℕs × ℕs ) ⊆ ( No × No ) )
6 4 4 5 mp2an ( ℕs × ℕs ) ⊆ ( No × No )
7 ovelimab ( ( -s Fn ( No × No ) ∧ ( ℕs × ℕs ) ⊆ ( No × No ) ) → ( 𝐴 ∈ ( -s “ ( ℕs × ℕs ) ) ↔ ∃ 𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ) )
8 3 6 7 mp2an ( 𝐴 ∈ ( -s “ ( ℕs × ℕs ) ) ↔ ∃ 𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) )
9 2 8 bitri ( 𝐴 ∈ ℤs ↔ ∃ 𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) )