Description: Define the surreal integers. Compare dfz2 . (Contributed by Scott Fenton, 17-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-zs | ⊢ ℤs = ( -s “ ( ℕs × ℕs ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | czs | ⊢ ℤs | |
| 1 | csubs | ⊢ -s | |
| 2 | cnns | ⊢ ℕs | |
| 3 | 2 2 | cxp | ⊢ ( ℕs × ℕs ) |
| 4 | 1 3 | cima | ⊢ ( -s “ ( ℕs × ℕs ) ) |
| 5 | 0 4 | wceq | ⊢ ℤs = ( -s “ ( ℕs × ℕs ) ) |