Metamath Proof Explorer


Theorem zsex

Description: The surreal integers form a set. (Contributed by Scott Fenton, 17-May-2025)

Ref Expression
Assertion zsex s ∈ V

Proof

Step Hyp Ref Expression
1 df-zs s = ( -s “ ( ℕs × ℕs ) )
2 subsfn -s Fn ( No × No )
3 fnfun ( -s Fn ( No × No ) → Fun -s )
4 nnsex s ∈ V
5 4 4 xpex ( ℕs × ℕs ) ∈ V
6 5 funimaex ( Fun -s → ( -s “ ( ℕs × ℕs ) ) ∈ V )
7 2 3 6 mp2b ( -s “ ( ℕs × ℕs ) ) ∈ V
8 1 7 eqeltri s ∈ V