Description: The surreal integers form a set. (Contributed by Scott Fenton, 17-May-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | zsex | ⊢ ℤs ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-zs | ⊢ ℤs = ( -s “ ( ℕs × ℕs ) ) | |
2 | subsfn | ⊢ -s Fn ( No × No ) | |
3 | fnfun | ⊢ ( -s Fn ( No × No ) → Fun -s ) | |
4 | nnsex | ⊢ ℕs ∈ V | |
5 | 4 4 | xpex | ⊢ ( ℕs × ℕs ) ∈ V |
6 | 5 | funimaex | ⊢ ( Fun -s → ( -s “ ( ℕs × ℕs ) ) ∈ V ) |
7 | 2 3 6 | mp2b | ⊢ ( -s “ ( ℕs × ℕs ) ) ∈ V |
8 | 1 7 | eqeltri | ⊢ ℤs ∈ V |