Description: The surreal integers form a set. (Contributed by Scott Fenton, 17-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zsex | ⊢ ℤs ∈ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-zs | ⊢ ℤs = ( -s “ ( ℕs × ℕs ) ) | |
| 2 | subsfn | ⊢ -s Fn ( No × No ) | |
| 3 | fnfun | ⊢ ( -s Fn ( No × No ) → Fun -s ) | |
| 4 | nnsex | ⊢ ℕs ∈ V | |
| 5 | 4 4 | xpex | ⊢ ( ℕs × ℕs ) ∈ V | 
| 6 | 5 | funimaex | ⊢ ( Fun -s → ( -s “ ( ℕs × ℕs ) ) ∈ V ) | 
| 7 | 2 3 6 | mp2b | ⊢ ( -s “ ( ℕs × ℕs ) ) ∈ V | 
| 8 | 1 7 | eqeltri | ⊢ ℤs ∈ V |