Metamath Proof Explorer


Theorem zssno

Description: The surreal integers are a subset of the surreals. (Contributed by Scott Fenton, 17-May-2025)

Ref Expression
Assertion zssno s No

Proof

Step Hyp Ref Expression
1 imassrn ( -s “ ( ℕs × ℕs ) ) ⊆ ran -s
2 df-zs s = ( -s “ ( ℕs × ℕs ) )
3 subsfo -s : ( No × No ) –onto No
4 forn ( -s : ( No × No ) –onto No → ran -s = No )
5 3 4 ax-mp ran -s = No
6 5 eqcomi No = ran -s
7 1 2 6 3sstr4i s No