| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subsf |
⊢ -s : ( No × No ) ⟶ No |
| 2 |
|
0sno |
⊢ 0s ∈ No |
| 3 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ No ∧ 0s ∈ No ) → 〈 𝑥 , 0s 〉 ∈ ( No × No ) ) |
| 4 |
2 3
|
mpan2 |
⊢ ( 𝑥 ∈ No → 〈 𝑥 , 0s 〉 ∈ ( No × No ) ) |
| 5 |
|
subsval |
⊢ ( ( 𝑥 ∈ No ∧ 0s ∈ No ) → ( 𝑥 -s 0s ) = ( 𝑥 +s ( -us ‘ 0s ) ) ) |
| 6 |
2 5
|
mpan2 |
⊢ ( 𝑥 ∈ No → ( 𝑥 -s 0s ) = ( 𝑥 +s ( -us ‘ 0s ) ) ) |
| 7 |
|
negs0s |
⊢ ( -us ‘ 0s ) = 0s |
| 8 |
7
|
oveq2i |
⊢ ( 𝑥 +s ( -us ‘ 0s ) ) = ( 𝑥 +s 0s ) |
| 9 |
|
addsrid |
⊢ ( 𝑥 ∈ No → ( 𝑥 +s 0s ) = 𝑥 ) |
| 10 |
8 9
|
eqtrid |
⊢ ( 𝑥 ∈ No → ( 𝑥 +s ( -us ‘ 0s ) ) = 𝑥 ) |
| 11 |
6 10
|
eqtr2d |
⊢ ( 𝑥 ∈ No → 𝑥 = ( 𝑥 -s 0s ) ) |
| 12 |
|
fveq2 |
⊢ ( 𝑦 = 〈 𝑥 , 0s 〉 → ( -s ‘ 𝑦 ) = ( -s ‘ 〈 𝑥 , 0s 〉 ) ) |
| 13 |
|
df-ov |
⊢ ( 𝑥 -s 0s ) = ( -s ‘ 〈 𝑥 , 0s 〉 ) |
| 14 |
12 13
|
eqtr4di |
⊢ ( 𝑦 = 〈 𝑥 , 0s 〉 → ( -s ‘ 𝑦 ) = ( 𝑥 -s 0s ) ) |
| 15 |
14
|
rspceeqv |
⊢ ( ( 〈 𝑥 , 0s 〉 ∈ ( No × No ) ∧ 𝑥 = ( 𝑥 -s 0s ) ) → ∃ 𝑦 ∈ ( No × No ) 𝑥 = ( -s ‘ 𝑦 ) ) |
| 16 |
4 11 15
|
syl2anc |
⊢ ( 𝑥 ∈ No → ∃ 𝑦 ∈ ( No × No ) 𝑥 = ( -s ‘ 𝑦 ) ) |
| 17 |
16
|
rgen |
⊢ ∀ 𝑥 ∈ No ∃ 𝑦 ∈ ( No × No ) 𝑥 = ( -s ‘ 𝑦 ) |
| 18 |
|
dffo3 |
⊢ ( -s : ( No × No ) –onto→ No ↔ ( -s : ( No × No ) ⟶ No ∧ ∀ 𝑥 ∈ No ∃ 𝑦 ∈ ( No × No ) 𝑥 = ( -s ‘ 𝑦 ) ) ) |
| 19 |
1 17 18
|
mpbir2an |
⊢ -s : ( No × No ) –onto→ No |