Database
SURREAL NUMBERS
Subsystems of surreals
Integers
zsex
Next ⟩
zssno
Metamath Proof Explorer
Ascii
Unicode
Theorem
zsex
Description:
The surreal integers form a set.
(Contributed by
Scott Fenton
, 17-May-2025)
Ref
Expression
Assertion
zsex
⊢
ℤ
s
∈
V
Proof
Step
Hyp
Ref
Expression
1
df-zs
⊢
ℤ
s
=
-
s
ℕ
s
×
ℕ
s
2
subsfn
⊢
-
s
Fn
No
×
No
3
fnfun
⊢
-
s
Fn
No
×
No
→
Fun
⁡
-
s
4
nnsex
⊢
ℕ
s
∈
V
5
4
4
xpex
⊢
ℕ
s
×
ℕ
s
∈
V
6
5
funimaex
⊢
Fun
⁡
-
s
→
-
s
ℕ
s
×
ℕ
s
∈
V
7
2
3
6
mp2b
⊢
-
s
ℕ
s
×
ℕ
s
∈
V
8
1
7
eqeltri
⊢
ℤ
s
∈
V