Metamath Proof Explorer


Theorem zsex

Description: The surreal integers form a set. (Contributed by Scott Fenton, 17-May-2025)

Ref Expression
Assertion zsex s V

Proof

Step Hyp Ref Expression
1 df-zs s = - s s × s
2 subsfn - s Fn No × No
3 fnfun - s Fn No × No Fun - s
4 nnsex s V
5 4 4 xpex s × s V
6 5 funimaex Fun - s - s s × s V
7 2 3 6 mp2b - s s × s V
8 1 7 eqeltri s V