Metamath Proof Explorer


Theorem nnzs

Description: A positive surreal integer is a surreal integer. (Contributed by Scott Fenton, 17-May-2025)

Ref Expression
Assertion nnzs A s A s

Proof

Step Hyp Ref Expression
1 peano2nns A s A + s 1 s s
2 nnsno A s A No
3 1sno 1 s No
4 pncans A No 1 s No A + s 1 s - s 1 s = A
5 2 3 4 sylancl A s A + s 1 s - s 1 s = A
6 5 eqcomd A s A = A + s 1 s - s 1 s
7 1nns 1 s s
8 rspceov A + s 1 s s 1 s s A = A + s 1 s - s 1 s x s y s A = x - s y
9 7 8 mp3an2 A + s 1 s s A = A + s 1 s - s 1 s x s y s A = x - s y
10 1 6 9 syl2anc A s x s y s A = x - s y
11 elzs A s x s y s A = x - s y
12 10 11 sylibr A s A s