Metamath Proof Explorer


Theorem nnzsd

Description: A positive surreal integer is a surreal integer. Deduction form. (Contributed by Scott Fenton, 26-May-2025)

Ref Expression
Hypothesis nnzsd.1 φ A s
Assertion nnzsd φ A s

Proof

Step Hyp Ref Expression
1 nnzsd.1 φ A s
2 nnzs A s A s
3 1 2 syl φ A s