Metamath Proof Explorer


Theorem nnzsd

Description: A positive surreal integer is a surreal integer. Deduction form. (Contributed by Scott Fenton, 26-May-2025)

Ref Expression
Hypothesis nnzsd.1 ( 𝜑𝐴 ∈ ℕs )
Assertion nnzsd ( 𝜑𝐴 ∈ ℤs )

Proof

Step Hyp Ref Expression
1 nnzsd.1 ( 𝜑𝐴 ∈ ℕs )
2 nnzs ( 𝐴 ∈ ℕs𝐴 ∈ ℤs )
3 1 2 syl ( 𝜑𝐴 ∈ ℤs )