Database
SURREAL NUMBERS
Subsystems of surreals
Integers
0zs
Next ⟩
n0zs
Metamath Proof Explorer
Ascii
Unicode
Theorem
0zs
Description:
Zero is a surreal integer.
(Contributed by
Scott Fenton
, 26-May-2025)
Ref
Expression
Assertion
0zs
⊢
0
s
∈
ℤ
s
Proof
Step
Hyp
Ref
Expression
1
1nns
⊢
1
s
∈
ℕ
s
2
1sno
⊢
1
s
∈
No
3
subsid
⊢
1
s
∈
No
→
1
s
-
s
1
s
=
0
s
4
2
3
ax-mp
⊢
1
s
-
s
1
s
=
0
s
5
4
eqcomi
⊢
0
s
=
1
s
-
s
1
s
6
rspceov
⊢
1
s
∈
ℕ
s
∧
1
s
∈
ℕ
s
∧
0
s
=
1
s
-
s
1
s
→
∃
n
∈
ℕ
s
∃
m
∈
ℕ
s
0
s
=
n
-
s
m
7
1
1
5
6
mp3an
⊢
∃
n
∈
ℕ
s
∃
m
∈
ℕ
s
0
s
=
n
-
s
m
8
elzs
⊢
0
s
∈
ℤ
s
↔
∃
n
∈
ℕ
s
∃
m
∈
ℕ
s
0
s
=
n
-
s
m
9
7
8
mpbir
⊢
0
s
∈
ℤ
s