Metamath Proof Explorer


Theorem 0zs

Description: Zero is a surreal integer. (Contributed by Scott Fenton, 26-May-2025)

Ref Expression
Assertion 0zs 0 s s

Proof

Step Hyp Ref Expression
1 1nns 1 s s
2 1sno 1 s No
3 subsid 1 s No 1 s - s 1 s = 0 s
4 2 3 ax-mp 1 s - s 1 s = 0 s
5 4 eqcomi 0 s = 1 s - s 1 s
6 rspceov 1 s s 1 s s 0 s = 1 s - s 1 s n s m s 0 s = n - s m
7 1 1 5 6 mp3an n s m s 0 s = n - s m
8 elzs 0 s s n s m s 0 s = n - s m
9 7 8 mpbir 0 s s