Description: Zero is a surreal integer. (Contributed by Scott Fenton, 26-May-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | 0zs | |- 0s e. ZZ_s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nns | |- 1s e. NN_s |
|
2 | 1sno | |- 1s e. No |
|
3 | subsid | |- ( 1s e. No -> ( 1s -s 1s ) = 0s ) |
|
4 | 2 3 | ax-mp | |- ( 1s -s 1s ) = 0s |
5 | 4 | eqcomi | |- 0s = ( 1s -s 1s ) |
6 | rspceov | |- ( ( 1s e. NN_s /\ 1s e. NN_s /\ 0s = ( 1s -s 1s ) ) -> E. n e. NN_s E. m e. NN_s 0s = ( n -s m ) ) |
|
7 | 1 1 5 6 | mp3an | |- E. n e. NN_s E. m e. NN_s 0s = ( n -s m ) |
8 | elzs | |- ( 0s e. ZZ_s <-> E. n e. NN_s E. m e. NN_s 0s = ( n -s m ) ) |
|
9 | 7 8 | mpbir | |- 0s e. ZZ_s |