Metamath Proof Explorer


Theorem 0zs

Description: Zero is a surreal integer. (Contributed by Scott Fenton, 26-May-2025)

Ref Expression
Assertion 0zs
|- 0s e. ZZ_s

Proof

Step Hyp Ref Expression
1 1nns
 |-  1s e. NN_s
2 1sno
 |-  1s e. No
3 subsid
 |-  ( 1s e. No -> ( 1s -s 1s ) = 0s )
4 2 3 ax-mp
 |-  ( 1s -s 1s ) = 0s
5 4 eqcomi
 |-  0s = ( 1s -s 1s )
6 rspceov
 |-  ( ( 1s e. NN_s /\ 1s e. NN_s /\ 0s = ( 1s -s 1s ) ) -> E. n e. NN_s E. m e. NN_s 0s = ( n -s m ) )
7 1 1 5 6 mp3an
 |-  E. n e. NN_s E. m e. NN_s 0s = ( n -s m )
8 elzs
 |-  ( 0s e. ZZ_s <-> E. n e. NN_s E. m e. NN_s 0s = ( n -s m ) )
9 7 8 mpbir
 |-  0s e. ZZ_s